Geeknet &3

g A

silashdof SOUrcefOrge free(code):

Parallel Programming: Goals, Skills, Platforms, Markets, Languages 2
Introduction: Extending Moore’s Law

Through the first several decades of the microprocessor revolution, software engineers, industry watchers
and, eventually, the public at large, all became accustomed to hearing about — and then experiencing —
routine, frequent and relatively dramatic improvements in chip performance from doubling of CPU
transistor counts and effective clock rates every two years.

Until recently, this meta-phenomenon, articulated by Intel co-founder Gordon E. Moore in a 1965 paper,
has remained uncannily accurate. But the now famous “Moore’s Law” has also obscured the increasingly
abstract relationship over time between transistor counts and CPU performance, especially for the non-IT
professional.

Actual performance improvements are the result of a host of technologies built on top of and around the
rising number of smaller and smaller transistors, including widening data paths and registers, on-chip
caching, instruction prefetch and other technologies that let more work be done in every clock cycle. But
though these advances (along with increasing clock rates) handily kept Moore’s Law close to accurate
through the close of the 20™ Century, shortly after the dawn of the new Millennium, the physics and
process of chip making hit a long-anticipated wall. Throughput increases for single CPU cores began to
stall due to basic physics and process limitations.

Enter Parallelism

Overcoming the problem — and re-engaging with Moore’s Law at a higher level of abstraction — meant
changing the way chips were engineered and organized in two main ways, both involving parallelization.
The first way was to provide on-chip circuitry and instructions for vectorization: assembly-language
instructions that operate on many pieces of data in parallel. First introduced by Intel on the Pentium 4,
this ‘Single Instruction, Multiple Data’ (SIMD) technology is now in its fourth generation.

The second way was to provide more cores, which led to Intel’s introduction first of dual-core CPUs for
desktop machines, then quad-core, eight-core and higher core-counts. So-called multicore CPUs are now
ubiquitous in laptops, desktop computers and servers, and are fast becoming the norm in smartphones,
tablets, ultrabooks and other mobile devices. As time goes on, the trend towards multicore is only
accelerating, with many-core devices like Intel’s 50-core Xeon Phi coprocessor board — introduced this
year — bringing the potential for supercomputer-like performance down onto PC desktops.

To obtain even more performance — beyond the capabilities of a single machine — various forms of task

parallelism are also possible. These entail using message-passing and other control methods to coordinate
and dispatch work to multiple machines in a cluster or other tightly or loosely coupled federation.

Geeknet T3

silashdo# Sourceforge free(code):

[0 A

Parallel Programming: Goals, Skills, Platforms, Markets, Languages 3

Parallelism and Today’s Developer

This has all happened very fast — changing the entire machine landscape in a single decade. Developers
most concerned with maximizing application performance now have new hardware paradigms, new
techniques of programming, debugging and optimization to master, and a whole new way of thinking
about how software works to explore and embrace. University computer science programs offering a full
treatment of these emerging themes are still evolving. Organizations such as ACM/IEEE (see
http://bit.ly/IClcpD) only this year are entering final deliberations on their first state-of-the-art-based
parallel development curricula. That means the developers most motivated to explore this new
technology are often proceeding with little formal training.

Meanwhile, elsewhere in computing, the appearance of ubiquitous multicore and other variants of
parallelism has had a more-muted effect, largely due to the ingenuity of chip, system, OS, driver and
compiler engineers — all of whom understand the commercial need to deliver performance improvements
while minimizing the need for total software overhauls.

As a result of their efforts, much contemporary software can enjoy a parallel performance boost from
vectorization-capable, multicore CPUs, coprocessors and other accelerators at relatively low cost of
developer time and attention. These ‘free or nearly so’ improvements are further enhanced by efforts by
chipmakers to ensure that upcoming higher performance and/or lower-power-drain multicore CPU
microarchitectures are back-compatible with popular existing chips. Thus Intel, for example, has
demonstrated its upcoming Haswell low-power processor with on-chip GPU will give existing software an
immediate ten percent performance boost, plus double the graphics performance of prior designs, all
without even a recompile.

Parallel Programming: Markets, Goals, Challenges

How are software developers and their organizations adapting to new parallel computing architectures?
How broad is the market for parallelism — or, more generally, for software acceleration and optimization?
What platforms are organizations deploying products on, and for what languages do developers need
parallel programming support?

This market report analyzes responses by the Go Parallel developer audience to questions exploring the
above topics. The online survey, which garnered 254 responses, was conducted with visitors to
http://goparallel.sourceforge.net.

Geeknet T3

silashdo# Sourceforge free(code):

[0 A

Parallel Programming: Goals, Skills, Platforms, Markets, Languages 4

Performance and Scalability

Question 1 explores the need to balance question 1:Are performance and scalability — on servers, desktops, coprocessors,
pure software performance and scale with mobile, clusters, or supercomputers — critical to your software product’s success?
improved resilience, security and overall

software quality. Most respondents (43%) B Extremely critical

said performance and scale were important
in balance with other requirements; an
almost equal number (37%) viewed
performance as most critical.

B Important in balance with
resilience and security

Less important than
The strong majority emphasis on reducing software defects
performance and scale (combined total
over 80%) is not surprising. Parallel
programming is about performance, and in
a parallel world, performance is about scale
in both directions: Creating code that makes best use of available threads and cores where resources are

constrained, but that can scale usefully where more cores are available.

B performance and scale are
not issues for us

Offering best-possible performance in all conditions provides a competitive advantage in many highly lucrative
software categories, for example, in commercial graphics, 3D modeling, CAD and media processing
applications, where end users will — in adapting to their own technical, logistical, cost, throughput and
workflow requirements — run the same application on a laptop and on a 12-core Xeon-powered workstation,
expecting no less than adequate performance from the first and demanding superior performance from the
latter.

Though notions of profit and the nature of engagements may differ, much parallel software for medical and
biotech, physical simulation, remote-sensing, aeronautics and defense is now evolving under some version of
the same constraints and expectations for optimal performance and down/up scalability. And for select
markets, introduction of high-end many-core boards like Xeon Phi are likely to create a new top end of
expectation for performance.

It’s not easy, however, to write optimal parallel software. Program architectures need to be developed — or
appropriate patterns selected — to use available cores efficiently, keep them busy, and scale to more cores
effectively — ideally offering near-linear performance improvements as core-counts climb. Data needs to be
organized in ways that permit fast allocation to waiting worker threads, best use of vector instructions, most
efficient use of cache lines. Builds need to be analyzed and tuned to remove unforeseen bottlenecks.

At the same time, the kind of high-value scientific, engineering, medical, aerospace and military applications

requiring optimal parallel performance often have equally stringent requirements for correctness — even for
mathematical verifiability in some cases. And these requirements may conflict with the nature of how parallel

Geeknet T3

silashdo# Sourceforge free(code):

[0 A

Parallel Programming: Goals, Skills, Platforms, Markets, Languages 5

application components, e.g., threads running independently across multiple cores, work. For example, testing
complex, data-dependent applications may require imposing deterministic constraints on order of execution —
something quite difficult to do in multi- and many-core systems without imposing significant overheads for
synchronization and sequencing.

And indeed, 16% of respondents chose to focus here — on reducing software defects — rather than on
performance. That doesn’t necessarily mean they’re not concerned with performance. In fact, the top three
respondent groups — performance-centric, performance/quality balanced, and quality-centric — are probably
not strongly distinguished from one another, except in terms of the specific requirements of projects they’re
undertaking or the nature of institutions in which they work (e.g., software businesses vs. university research
teams), these factors in turn influence the degree to which each emphasizes “getting the most bang from the
hardware” over “getting the answers right,” or vice-versa. Clearly, both are essential and are part of any
normal software development process.

The bottom line, however, is that parallel development is complex. And for many, and perhaps most,
programming teams and development scenarios, this intrinsic complexity presents a major business problem:
How to organize development to obtain maximum performance (and/or correctness) with minimum
expenditure? These days, the best answer can be found in software development tools that serve all facets of
process, beginning with the design, through coding, analysis, tuning, optimization and verification.

Intel’s Parallel Studio XE 2013 development toolkit, for example, leads in with a package called Intel Advisor
XE 2013 — a threading assistant for C, C++, C# and Fortran that helps describe an application’s goals, desired
deployment platforms and other characteristics. It also analyzes and simulates the software’s performance,
recommends tests, finds potential flaws pre-implementation, and helps determine which of many parallel
development paradigms is best suited for your project. Advisor XE combines performance and correctness
analysis, and is equally useful in guiding from-scratch development and helping determine strategy for
efficiently parallelizing existing code.

Level of Expertise

FOIIOWing on this theme: Question 2 prObeS the Question 2: Among the members of your programming team, what’s the average
level of programming team’s existing expertise level of expertise in programming for multiple threads and cores?

in multi/many-core parallel programming. Given
the speed with which multicore has become
ubiquitous, it makes sense only a minority of
respondents (17%) classify themselves as
multicore specialists. Yet due both to its ubiquity
and to competitive pressures to ensure that
certain software makes best use of hardware
resources -- over half of respondents (54%)
report hands-on experience in the discipline.

Geeknet T3

B Most have theoretical
knowledge, but may be
outdated

B Some of us have recent,
hands-on expertise

We're specialists in
parallel programming

B We're substantially
untrained in this discipline

e 4

silashdo# Sourceforge free(code):

http://intel.ly/TFfN5U
http://intel.ly/Q7KvQa
http://intel.ly/Q7KvQa

Parallel Programming: Goals, Skills, Platforms, Markets, Languages 6

Yet that means that fully still 46% have little or no real experience in multicore. Only about half of these (24%)
feel they even have the knowledge needed to assimilate new skills. This doesn’t necessarily mean these less-
skilled coders are simply more junior. For example, ever-increasing use of computation in the sciences,
combined with the lure of ‘desktop supercomputing’ hardware, suggests that at least some lacking multicore
exposure are actually subject-matter experts, steeped in the specifics of valuable algorithms specific to their
fields.

The presence of such a large skills gap presents a challenge in training, optimal resource utilization and in
productivity enhancement. It confirms the need for flexible tools that simultaneously let multicore specialists
tackle complex projects in optimal ways, while also letting less-skilled developers (some of whom may
possess unique domain knowledge) build effective parallel applications from scratch or parallelize existing
code with good results.

For this reason, top-end parallel development tools like Intel Parallel Studio XE 2013 (and its partner product,
Intel Cluster Studio 2013, due later this year), both of which work fluently inside Microsoft Visual Studio, offer
developers a range of different parallel development methodologies aimed at different types of projects,
programmer skill levels and constraints on time, knowledge and cost.

By far the simplest is Intel Cilk Plus — a terse set of pragmas and a simple array notation for C/C++ enabling
rapid and efficient vectorization of loops, and easy creation of custom reducers. More comprehensive (and
complementary) is Intel Threading Building Blocks — a library enabling creation of thread-based parallel
applications on multicore while abstracting platform details and threading mechanisms. For developers who
prefer an open source approach, Parallel Studio XE 2013 also supports OpenMPI, as well as a host of specific,
highly optimized parallel libraries for math.

Deployment Platforms

Question 3 asks respondents about Question 3:What kind of platforms do you deploy applications on?
deployment platforms. Here, the
majority (63%) are focused on
developing for desktop computers
and servers, while a smaller group
(24%) are working with clusters and
grids. A minority (6%, but sure to
grow) is focused on more mobile
platforms such as ultrabooks and
performance tablets. Another small
group works on supercomputers, B Supercomputers
presumably including desktop-based.

B Grids, clusters, clouds

M |ndividual server and/or desktop
workstations

Mobile and handheld platforms
(tablets, smartphones)

Geeknet T3

e 4

silashdo# Sourceforge free(code):

http://intel.ly/TFmLIl
http://bit.ly/fkaA8f
http://intel.ly/WaHSS3

Parallel Programming: Goals, Skills, Platforms, Markets, Languages 7

This mix maps well to the emphasis implicit in Intel’s existing developer tool channels — notably Intel Parallel
Studio XE 2013, for desktop/workstation software development; and Intel Cluster Studio XE 2013, for
developing cluster applications. It’s interesting to note that these are essentially the same product, with
different deployment models; and that Parallel Studio XE 2013 already includes support for Xeon Phi, which
brings supercomputing to the desktop, and which will serve as the compute node in Cray’s upcoming Cascade
cluster supercomputing line.

Most Important Requirements

Question 4 explores business Question 4: In developing parallel code, what’s most important for your business?
priorities and requirements for

parallel development. The largest i Compatibility with open
group (40%) s pragmatically parallel computing standards
focused on optimizing multicore
performance with least effort. A
smaller, but significant group
(30%) seeks efficient conversion
of convert sequential applications
to parallel.

M Ease in converting sequential
applications to parallel

Optimize multicore
performance with minimal
effort

. . , B Scale performance linearly
Again, it would seem that Intel’s across heterogeneous

comprehensive support for the hardware

full development process neatly

attacks both these problems. Optimization is greatly eased in working with Intel’s VTune Amplifier XE 2013, an
analytic, graphical optimizer and profiler fully integrated with Intel Parallel Studio XE 2013, and offering rapid
iteration and comparison of source, object code and live performance data. VTune Amplifier XE lets you find
the individual lines in your code that are costing program execution time, visualize issues with their
performance, and recode iteratively to fix problems.

For converting serial applications, an ideal process would begin with Intel Parallel Advisor XE guided analysis
and simulation, followed by profiling with VTune Amplifier XE to find opportunities for selective parallelization
for maximum effect. Simplified, highly optimized local changes might then be made in Parallel Studio XE 2013,
using Cilk Plus semantics for vectorization and Threading Building Blocks, if required, for higher-level, but still
abstract creation of task-parallel segments.

Use of abstraction mechanisms like Cilk Plus and TBB speed development and go a long way toward ensuring
optimal scalability and portability of code as well. The underlying runtimes are highly optimized for minimum
overhead and maximum speed, representing years of continuous R&D by Intel developers, and enabling rapid
redeployment of applications optimally on a range of target hardware.

Geeknet T3

silashdo# Sourceforge free(code):

[0 A

http://intel.ly/QZNZXb

Parallel Programming: Goals, Skills, Platforms, Markets, Languages 8

The Proliferation of Parallel

Question 5 explores the range of industries now engaged, or potentially engaged, in parallel software
development. What’s remarkable here is the diversity, with predictably high numbers of responses from
university, consulting, digital content, medical research, environment, resource exploration, engineering and
manufacturing, communications and other markets long dependent on high performance computing.

. . . R 5
Question 5: What industry does your company/institution belong to? B Computer Aided Engineering (CAE) / Manufacturing

M Digital Content Creation & Distribution
B University/Academic

B Government Lab

B Geosciences and Geo-engineering

B Economics/Financial

M Bio-Sciences / Life Sciences / Healthcare
M Electronic Design Automation (EDA)

[SW Development Tools

2%
2% H Defense
B Weather
A45% 1% | .45% i Chemical Engineering

i Mechanical Design and Drafting

B Communications - Telecom / Datacom Services &
Infrastructure
Retail/Wholesale

H Gaming

i Professional Services/Consulting

Other

We’'d hazard that as true desktop supercomputing performance becomes more generally available due to
innovations such as Intel Xeon Phi, and as understanding of parallel development becomes more widespread,
penetration into ever-more-diverse businesses will follow as a matter of course.

Geeknet T3

e 4

silashdo# Sourceforge free(code):

Parallel Programming: Goals, Skills, Platforms, Markets, Languages 9

Languages Used

Finally, question 6 asks about programming question 6: Which languages do you use for development?
language preferences. As one might expect,
C/C++-- widely known, highly evolved and

high performance — dominates here. But WC/CH+
Java and C# figure prominently in survey ® Fortran
responses as well, perhaps suggesting u
growing interest in cluster-parallel

development, and perhaps in development W lava
efforts targeted at multicore mobile devices. B Python
Interestingly, 17% of respondents chose = Other

‘Other’ — perhaps reflecting growing interest
in parallelism-friendly languages like Haskell
and Go.

Conclusion

Statistics from this survey portray a market evolving rapidly, as technology for multicore becomes increasingly
widespread and as commercial pressures mount to take better advantage of dramatic performance
improvements possible with present and subsequent generations of processors and associated tools.

At present, software developers seem to fall into several fairly distinct groups, well served by Intel’s software
development product lines. The majority — whether because of limited skill or limited budgets and time - want
parallel benefits with minimum fuss, and are drawn to sophisticated but simple tools like Cilk Plus that enable
efficient parallelization of existing applications and rapid development of new applications. A more elite
market gravitates toward Intel Threading Building Blocks, Cluster Studio, OpenMPI integrations and other
more advanced approaches that accommodate the demands of more sophisticated scientific and engineering
software development projects.

John Jainschigg is a Geeknet contributing editor, and is CEO of World2Worlds, Inc., a digital agency focused on immersive technology
and gaming. John’s initial intro to concurrency was via interrupt and re-entrancy programming at the assembler level on Z80 and
68000-based systems. He wrote concurrent, time-critical packet-switching applications on HP-UX RISC machines in the late 1980s,
and since then has worked up and down the client-server stack in Java, C++, PHP, and other conventional and scripting languages,
and more recently, in task-specific, state-based, radically concurrent languages like LSL.

Geeknet T3

e 4

silashdo# Sourceforge free(code):

	11842-Parallel Programing-Goals, Skills, Platforms, Markets, Languages- Cover Page
	11842-Parallel Programming-Goals, Skills, Platforms, Markets, Languages-Inside Pages 10.15.12

