
Pointer Checker:

This article introduces a powerful new feature called Pointer Checker, which 
precisely and easily isolates elusive bugs in programs. Found in the Intel® C++ 
Composer XE 2013 product, its integration into the compiler adds powerful  
functionality in a way that slides seamlessly into build systems. Clever  
implementation and powerful error reporting provide precise information about 
latent program defects. We are excited that during beta testing of this new 
feature, customers reported that this tool found numerous defects.

by Kittur Ganesh, Technical Consulting Engineer

Easily Catch Out-of-Bounds 
Memory Accesses  

Although C/C++ pointers have well-defined semantics, 
many applications could still make out-of-bounds memory accesses 
which can go undetected, risking data corruption and increasing 
vulnerability to malicious attacks. The Pointer Checker provides  
full checking of all memory accesses through pointers. A pointer-
checked enabled  application will therefore catch out-of-bounds 
memory accesses before memory corruption occurs. 

With the advent of multicore processors, there is a need to program 
for data and thread parallelism where data is frequently created, 
stored, shared, and accessed in memory through pointers. The C and 
C++ languages define good semantics for memory access through 
pointers, but they also permit the use of these pointers without any 
restrictions. This provides no built-in protection against accessing  
or writing most user data in memory. This means you can perform any 
number of arbitrary operations on the pointers—resulting in severe 
unforeseen errors in the program whose effects often appear random 
due to unintentional modification of data—causing out-of-bounds 
(OOB) memory accesses which may often go undetected.  

Although pointers have well-defined lower and upper bounds, 
languages (and therefore the compilers) typically don’t enforce  
bounds checking due to performance and speed concerns. This paves 
way for potential buffer overflows and overruns in various parts of 
the application code—causing data corruption, erratic program 
behavior, breach of system security, etc.—and is the basis for many 
software vulnerabilities to malicious attacks. 

The launch of Intel® Parallel Studio XE 2013 brings a key 
new feature: the Pointer Checker, which performs bounds 
checking—providing full checking of all memory accesses 
through pointers—and identifies any out-of-bounds access  
in Pointer Checker-enabled code. This article presents a  
comprehensive overview and usage model of Pointer Checker, enabling 
you to quickly get started using this key debugging feature on your 
critical applications.



Overview 
The Pointer Checker is a key feature of Intel Parallel Studio XE 2013. 
The main functionality of Pointer Checker is to find buffer overflows 
or overruns occurring in applications developed in high-level C and C++ 
languages on Windows* or Linux* operating systems. A buffer over-
flow or a buffer overrun is an anomaly where a program, while writing 
data to a buffer, overruns the buffer’s boundary and overwrites  
adjacent memory. This is a special case of violation of memory safety. 
For example, consider an array as the buffer as shown in the short 
code snippet in Figure 1. 

A buffer overflow occurs when you try to put more items in the 
array than what the array can hold. It occurs generally from writing or 
a store operation. On the other hand, a buffer overrun occurs when 
you are iterating over the buffer and keep reading past the end of the 
array. It generally occurs from reading or a load operation. Additionally, 
simple coding errors are often very hard to locate and rectify. For 
example, pointers are invariably masked by casting to a void pointer 
and then recasting to other pointers, making it very difficult to identify 
the cause of errors in the application. As mentioned earlier, since a 
pointer has a well-defined lower and upper bound, Pointer Checker 
performs bounds checking for all memory accesses through pointers—
ensuring that a pointer is within bounds before its use for either a 
read or a write operation. 

The Pointer Checker feature can be enabled via compile time switches. 
When you build your application with the Pointer Checker-enabled 
option, it will identify and report out all out-of-bounds memory accesses 

occurring in the application, including subscripted array accesses. In 
addition, the Pointer Checker can also detect dangling pointers, meaning 
pointers that point to memory that has been freed. When you build 
your application with the dangling pointer detection-enabled option, 
using a dangling pointer in an indirect access will also cause the 
Pointer Checker to report out an out-of-bounds error. Another useful 
feature that Pointer Checker offers is to check bounds for arrays 
without dimensions, which is especially important since applications 
are integrated with many different modules developed by different 
developers who often extern shared data.

The Pointer Checker feature is implemented mostly in a runtime 
library which is automatically linked in by the Intel® compiler. It also 
offers an easy-to-use, user application programming interface (API) to 
allow control over what happens when an out-of-bounds violation is 
detected. You can be assured that Pointer Checker does not change 
the data structure layout or application binary interfaces (ABI), thus 
allowing your application to contain Pointer Checker-enabled code, as 
well as code that is not enabled. This is a key benefit of Pointer 
Checker: you can incrementally enable and test a small number of  
critical files, gradually enabling the rest of the legacy code in  
your application. 

To ensure pointers have proper bounds set, there are a few well 
defined intrinsics that you can use to retrieve, kill, or make new pointer 
bounds. This is especially handy when working with a mix of enabled 
and non-enabled code or, for example, when using your own custom 
allocation functions that may need resetting of pointer bounds. Also, 
the Pointer Checker contains a Runtime Library Functions (RTL) 
wrapper library used for checking of C runtime library functions, so 
proper bounds are maintained for pointers manipulating memory in 
those functions referenced in the application.

One obvious concern is the runtime performance overhead incurred 
when application is enabled with Pointer Checker since it entails 
bounds checking of all pointers in memory. For this reason, the Pointer 
Checker is seen as a key debugging feature designed for use during 
application testing and debugging prior to releasing the product. 

“The main functionality of Pointer Checker is to find buffer 
overflows or overruns occurring in applications developed in 
high-level C and C++ languages on Windows* or Linux*  
operating systems.“

char *buf = (char *)malloc(5); 
for (int i=0; i<=5;i++) { 
 buf[i] = ‘A’ + i; 
} 

Figure 1

2



Model Description

Header File Defines intrinsics and reporting functions (chkp.h) 

Compiler Options 
 

-check-pointers (On Linux*)
 /Qcheck-pointers (On Windows*)  

Enables pointer checker and adds associated libraries

-check-pointers-dangling 
(/Q-check-pointers-dangling) 

Enables checking for dangling pointer references

-[no-]check-pointers-undimensioned (/
Qcheck-pointers-undimensioned[-]) 

The default is to check the undimensioned arrays. You 
use the switch to DISABLE checking of undimensioned 
arrays for nonstandard code.

Intrinsics 

void * __chkp_lower_bound(void **) Returns the lower bound associated with the pointer

void * __chkp_upper_bound(void **) Returns the upper bound associated with the pointer

void * __chkp_kill_bounds(void *p) Removes the bounds information and pointer in argument can 
access all memory.

void * __chkp_make_bounds(void *p, size_t size)
Creates a new pointer with bounds specified by arguments. The 
bounds are attached to the returned pointer. The pointer that is 
passed as argument is not affected.

Reporting API
(Function/
Enumeration)

void __chkp_report_control(__chkp_report_option_t 
option, __chkp_callback_t callback) Determines how errors are reported

__chkp_report_option_t 
{Key Enumerations: __CHKP_REPORT_LOG, __CHKP_
REPORT_TRACE_LOG, __CHKP_REPORT_CALLBACK, 
__CHKP_REPORT_BPT, __CHKP_REPORT_TERM}

Controls how out-of-bounds errors are reported. Enumerations 
are defined in the header file “chkp.h”

RTL Functions Provides checking on C runtime library functions that manipulate memory through pointers

Table 1

High-Level Design
The high-level design philosophy for Pointer Checker is "bounds follow the pointer.” The compiler creates bounds when a pointer is created via the 
"&” operator or array reference, copies bounds when a pointer is copied, stores bounds when a pointer is stored in memory, loads bounds when a 
pointer is loaded from memory, and passes bounds with pointer arguments and function returns. In addition, the compiler generates checks when 
a pointer is used for indirect memory references. 

The runtime library wrapper functions contained in the wrapper library create bounds when memory is allocated, copies bounds for memory 
copies, and checks bounds for pointer parameters (e.g., strcpy()). Also, it has to be noted that casting does not change the bounds of a 
pointer, thus maintaining consistency across function calls and MACRO expansions.

Usage Model
The Pointer Checker usage model is simple and easy to understand and is made up of compiler options for enabling Pointer Checker, intrinsics for 
retrieving or manipulating pointer bounds, reporting API functions and enumerations for controlling how out-of-bounds are reported and, finally, 
RTL wrapper functions to ensure that the pointer's usage within the RTL routines is within bounds. A header file "chkp.h” contains the definitions 
of intrinsics and reporting API for inclusion in the Pointer Checker-enabled application. Table 1 provides a summary of features covered in more 
detail in subsequent sections.
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Using Pointer Checker
As stated earlier, Pointer Checker can be enabled with a single compiler 
switch to check bounds of pointers for write or read/write operations. 
In conjunction, you can check for arrays with and without dimensions, 
check for dangling pointers, check runtime library functions, check 
custom memory allocators, and so on. In this section, real-world 
sample scenarios are used to illustrate the various ways with which 
you can use Pointer Checker to ensure memory safety and catch  
out-of-bounds memory accesses, if any, in your application.

Checking Bounds

With a single compiler switch, you can enable Pointer Checker to check 
bounds of pointers on read/write operations. (Figure 2)

By default, Pointer Checker is disabled. If you compile with the write 
option, Pointer Checker is enabled and checks for bounds of pointers 
for all write operations. Specifying the "rw” option ensures bounds 
checks for all read, as well as write operations. Consider the real-world 
example in Figure 3 that was part of a large enterprise application 
code base. 

Compile and execute without Pointer Checker-enabled switch 
using the Intel® compiler as follows:

% icc main.c;./a.out  
sizeof another_chptr is 3 
sizeof my_chptr is 8 
after memset = @@@@@@@@

Notice that eight characters are output instead of the intended 
three characters. This is because the developer made a common, 
subtle programming error in passing the size of the pointer "my_
chptr” instead of the string length of the object pointed to by 
my_chptr pointer. Let’s find out if Pointer Checker catches this 
out-of-bounds (OOB) error following the steps outlined below.

Compile and execute with Pointer Checker enabled for write  
operations. (Figure 4)

In the example code, the enumeration option __CHKP_
REPORT_TRACE_LOG is used in the reporting library func-
tion __chkp_report_control() which tells Pointer 
Checker to report out OOB error with call trace-back information 
from where OOB occurred. Also, the option –g (/Zi on 
Windows*) and the linker option –rdynamic is used for better 
trace-back output. 

“Although C/C++ pointers have 
well-defined semantics,  
many applications could still 
make out-of-bounds memory 
accesses which can go  
undetected, risking data  
corruption and increasing  
vulnerability to malicious  
attacks.“
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1 #include <stdio.h> 
2 #include <chkp.h> 
3  
4 int main () { 
5 #ifdef __MYCP_REPORT 
6 __chkp_report_control(__CHKP_REPORT_TRACE_LOG, 0); 
7 #endif  
8 char *my_chptr[] = “abc”; 
9 char *another_chptr; 
10 another_chptr = (char *) malloc (strlen(( char *)my_chptr)); 
11 printf (“sizeof another_chptr is %d\n”, strlen(( char *)my_chptr)); 
12 printf (“sizeof my_chptr is %d\n”, sizeof(my_chptr)); 
13 memset (another_chptr, ‘@’, sizeof(my_chptr)); /* OOB */ 
14 printf (“after memset = %s\n”, another_chptr); 
15 return 0; 
16 }

Figure 3

-check-pointers=[none | write | rw] (On Linux* OS)  
/Qcheck-pointers:[none | write | rw] (On Windows* OS)

Figure 2

Figure 4

% icc main.c –D__MYCP_REPORT -check-pointers=write -rdynamic -g; ./a.out 
sizeof another_chptr is 3
sizeof my_chptr is 8
CHKP: Bounds check error
lb: 0x232e010
ub: 0x232e012
addr: 0x232e017
end: 0x232e017
size: 1
Traceback:
./a.out(__chkp_memset+0x6b) [0x40448b]
in file unknown line 0
./a.out(main+0x334) [0x402f48] in file main.c line 13
/lib64/libc.so.6(__libc_start_main+0xfd) [0x3b7d41ec5d]
in file unknown line 0
./a.out() [0x402b59]
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1 int ppmatch(char *s, char *t) { 
2 char c; 
3 while(isupper(*s) || isupper(*t)) { 
4 if (*s != *t) return FALSE; 
5 s++; 
6 t++; 
7 } 
8 while (*s != '\0') { 
9 if (*s != '#') { 
10 if (*t == '\0') c = '*'; else c = *t; 
11 if (*s != c) return FALSE; 
12 } 
13 s++; 
14 t++; 
15 } return TRUE; 
16 }

 Figure 5

Figure 6

1 #include <stdio.h> 
2 #include <malloc.h> 
3 #include <chkp.h> 
4 int main () { 
5 #ifdef __MYCP_REPORT 
6__chkp_report_control(__CHKP_REPORT_TRACE_OG, 0); 
7 #endif 
8 char *buf = malloc(4); 
9 int i; 
10 for (i=0; i<=4; i++) { 
11 printf(“ %c”,buf[i]); /* OOB */ 
12 } 
13 for (i=0; i<=4; i++) { 
14 buf[i] = ‘A’ + i; /* OOB */ 
15 printf(“ %c”,buf[i]); } printf (“\n”); return 0; 
16 }
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1 #include <stdio.h> 
2 #include <chkp.h> 
3 char *foo() 
4 { 
5 char fr[]="test"; /* func: char *GetUserInput()*/ 
6 char *to = malloc(10); 
7 strcpy(to, fr); 
8 free(to); 
9 return to; 
10 } 
11 int main() 
12 { 
13 #ifdef REPORT 
14 15 __chkp_report_control(__CHKP_REPORT_TRACE_LOG, 0); 
15 #endif 
16 char *sp = foo(); 
17 printf("first ch=%s\n",*sp); /* OOB */ 
18 }

Figure 8

You’ll notice that Pointer Checker indeed catches an OOB error and outputs the trace-back from where the fault 
occurred, which is at the address: ./a.out(main+0x334)[ 0x4032b8]. The source line where OOB occurs is at 
line number 13 in the file main.c for mapped address 0x4032b8. This clearly is the line containing the memset()  
call where the size of the pointer "my_chptr” was used instead of the intended string length of my_chptr pointer. 
The trace-back output also gives bounds information, such as the lower bound (lb), upper bound (ub), and the address 
information of the pointer where the OOB fault occurred. 

Figure 5 shows yet another tricky real-world code snippet (parser code in one of SPEC 2000 benchmarks) that ends 
up accessing beyond the zero terminator of the string. If the string passed in pointer s is longer than in pointer t, t  
can get incremented past the end of the string in the execution of the benchmark and gets an OOB error from Pointer 
Checker. Figure 6 shows another classic code example containing a buffer overrun in the first for loop (line# 11) during 
a read operation where the iterator goes past the upper bound of 4 bytes allocated for pointer buf, and a buffer  
overflow during a write operation in the next for loop (line# 14). Note that you’ll need to compile with "rw” option for  
check-pointers so read/write operations are checked by Pointer Checker for OOB errors.

Figure 7

-check-pointers-dangling=[none | heap | stack | all] (Linux* OS) 
/Qcheck-pointers-dangling:[none | heap | stack | all] (Windows* OS)

-[no-]check-pointers-undimensioned (Linux* OS) 
/Qcheck-pointers-undimensioned[-] (Windows* OS)

Figure 9
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Perl -4 code snippets:

Building the application results in: 
doio.obj : error LNK2019: unresolved external symbol  
__cp_array_end___sys_errlist referenced in function _nextargv 
perl.obj : error LNK2001: unresolved external symbol  
__cp_array_end___sys_errlist 
stab.obj : error LNK2001: unresolved external symbol  
__cp_array_end___sys_errlist 
perl4.exe : fatal error LNK1120: 1 unresolved externals

1)	sys_errlist is declared in perl.h and undimensioned array sys_errlist is  
then referenced in the definition of strerror: 
 
perl.h: #define strerror(e) ((e) < 0 || (e) >= sys_nerr ? "(unknown)" : sys_
errlist[e])

2)	strerror is called in doio.c,perl.c, and stab,c hence the 3 unresolved  
symbol messages

Figure 11

%cat main.c 
1 #include <stdio.h> 
2 #include <chkp.h> 
3 extern int A[]; 
4  
5 int main () { 
6 #ifdef REPORT 
7__chkp_report_control(__CHKP_REPORT_TRACE_LOG, 0); 
8 #endif  
9 A[3] = 1; 
10 A[5] = 2; /* OOB */ 
11 return 0; 
12 } 
%cat arr1.c 
int A [5]

Figure 10

“Pointer Checker-enabled code and non-enabled code  
can coexist. Security benefits from catching software  
vulnerabilities prior to product release far outweigh the  
runtime performance overhead, which is the big trade-off.”

8



Checking for Dangling Pointers

Pointer Checker can identify and report dangling pointers on the stack 
or heap, and can be enabled by a single compiler switch in Figure 7.

Pointer Checker uses a wrapper function for the runtime routine 
free() and the C++ delete operator, and sets the lower bound of all the 
dangling pointers in heap or stack to 2 and upper bounds to 0; so any 
pointer with bounds values as such can be considered a dangling 
pointer in your Pointer Checker-enabled application. Figure 8 shows a 
careless mistake by the developer: freeing the "to” pointer before 
return in function foo() and, when enabled for dangling pointers, using 
the option –check-pointers=heap, Pointer Checker will report an OOB 
error at line number 17.

Checking Arrays (With or Without Dimensions)

Pointer Checker, when enabled for read / write, checks for bounds of 
arrays defined with dimensions by default. For checking of bounds of 
arrays without dimensions, you can use the compile switch as in 
Figure 9. Figure 10 shows another real-world example where an 
array A defined in file arr1.c is extern-ed in another file arr.c and then 
written to it beyond the allocated size of 5 elements. When the  
code is Pointer Checker enabled for write operation, Pointer Checker 
will report an OOB at line number 10 in the code.

Minimize frustration and 
maximize tuning effort with 
Amdahl's Law 
by Shannon Cepeda

I recently had a question from a customer who had introduced 
a successful optimization to a hot function in his application, 
but did not see as much improvement in the overall  
application as he expected. This is a fairly common occurrence 
in the iterative process of performance tuning. Usually it 
happens for one of two reasons.

1. Introducing an improvement in one area resulted  
in inefficiencies somewhere else. This is par for  
the course with performance tuning, and part of  
the reason why the process is iterative. It can be  
hard to anticipate whether a code change you are 
making in one function will decrease performance 
somewhere else down the road, and so landing in  
this situation from time to time is unavoidable. 
Although you may not be able to always prevent it, 
using good documentation practices and a tool like 
Intel® VTune™ Amplifier XE to quantify performance 
changes can help you see when it is happening.

Visit Go-Parallel.com
Browse other blogs exploring a range of related  

subjects at Go Parallel: Translating Multicore  
Power into Application Performance.

SEE THE REST OF Shannon’S BLOG: 

BLOG
highlights
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void *myalloc(size_t old_size) { 
// code 
….. 
// code creating a pointer by using a RTL function from a non-enabled module 
(void *) p = my_realloc(p, old_size + 100); 
p = __chkp_kill_bounds(p); 
p = (void*)__chkp_make_bounds(p, old_size + 100); 
return p; 
}

Figure 16    

Intrinsics: 
void * __chkp_kill_bounds(void *p)
>> Kills the descriptor associated with the  
pointer making all memory accessible via the  
returned pointer. 
Void * __chkp_make_bounds(void *p, size_t size)
>> Make bounds for a pointer. The lower  
bounds is pointer, and the upper bound is pointer +  
(size – 1). 
void * __chkp_lower_bound(void **) / 
void * __chkp_upper_bound(void **)
>> Retrieves the lower / upper bound  
associated with a pointer

Figure 13

%nm libchkpwrap.a | egrep 'T __chkp_‘ |grep strcpy  
00000000000002a0 T __chkp_strcpy

Figure 12

Example: custom memory allocator 
void *myalloc(size_t size) {  
// Code allocating the large chunk of memory  
// into smaller chunks.  
// Add bounds information to the pointer 
p = __chkp_make_bounds(p, size); 
return p;  
}

Figure 14
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Checking for un-dimensioned arrays is especially important, as arrays 
defined in a module by one developer are referenced as un-dimen-
sioned in other modules developed by other developers, and vice-versa. 
Figure 11 shows code snippets of interest from an older version of 
Perl 4 application. In it, the un-dimensioned array "sys_errlist” is 
declared in perl.h and referenced in strerror macro definition, which then 
is used in several files like doio.c, perl.c, stab.c, etc.

Building the Perl 4 application with Pointer Checker enabled for read 
/ write operations results in unresolved external symbols of __cp_
array_end___sys_errlist messages. Note that, Pointer 
Checker adds the prefix __cp_array_end to the un-dimensioned 
array sys_errlist symbol for upper bound notation as it cannot 
find the dimensioned array definition during compilation. Also, the 
dimensioned array definition happens to be defined in a non-pointer-
checker-enabled library. The solution for such a scenario is to turn off 
un-dimensioned checks by using –check-pointers-undimen-
sioned (Linux*) or /Qcheck-pointers-
undimensioned- (Windows*) and complete the build.

A similar approach can be used in scenarios where, for example,  
an array "a” is defined in one module with a dimension (say 100),  
again redefined in another module with a dimension (say 200), and 
referenced as an un-dimensioned array “a[]” in a different module, 
which C-language does allow, although it’s not a standard approach. 
Compiling such an application enabled for checks for un-dimensioned 
arrays would result in "multiple definition of ‘a’” and 
"multiple definition of `__cp_array_end_a'” 
messages, as Pointer Checker would have added the prefix __cp_
array_end for upper bound of symbol "a." In such a scenario, the 
solution is to turn off un-dimensioned arrays checks for relevant  
files when enabling with Pointer Checker for read or write operations.

Checking Runtime Library Functions

There are many C runtime library functions that manipulate memory 
through pointers and may need to be encapsulated or replaced so 
returned pointers have proper descriptors, and so usage of pointers 
within the RTL routine are checked correctly for any bounds violations. 
Pointer Checker has a wrapper library called libchkpwrap (Linux) and 
libchkpwrap.lib (Windows), which provides equivalent C runtime library 
wrapper functions that either replace the runtime library function or 
wrap with appropriate pointer-checking mechanisms. The wrapper 
library is automatically linked-in when you compile with the Intel® 
compiler with Pointer Checker enabled. All equivalent wrapper runtime 
library functions will have a prefix "__chkp” attached to the name  
of the library. For example, equivalent strcpy() wrapper library  
function (Linux) can be found as shown in Figure 12.

You can also write your own wrappers for runtime library functions. 
You will then have to manipulate the pointer bounds, for which you 
would use one or more of the Pointer Checker intrinsics. 
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“A pointer checked-enabled 
application will catch  
out-of-bounds memory  
accesses before memory  
corruption occurs.“

Using Intrinsics

The Pointer Checker intrinsics are ideal for writing your own wrappers 
for runtime library functions, when working with Pointer Checker-
enabled and non-enabled modules, or when you are creating custom 
memory allocators and need bounds manipulation (checking and 
creating correct bounds), etc. Figure 13 shows the available intrinsics 
to kill bounds associated with a pointer, make bounds, or retrieve 
bounds information. Figure 14 demonstrates how you can write a 
custom wrapper for manipulating a large chuck of memory into smaller 
chucks and ensure bounds are checked. It is important to note that  
the returned pointer from the __chkp_make_bounds() call has the  
new bounds.

Figure 15 shows a sample program demonstrating a custom  
allocator wrapper using Pointer Checker intrinsics. 

Working with Enabled and Non-Enabled Modules

An enabled module is a module compiled with the Pointer Checker-
enabled switch, while a non-enabled module is compiled with Pointer 
Checker option disabled. If you write a pointer to memory or return a 
pointer from a non-enabled module, the pointer may get incorrect 
bounds information. If you use this pointer with the incorrect bounds 
information in an enabled module, the pointer checker will report an 
incorrect out-of-bounds error because the bounds do not correspond 
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“The Pointer Checker intrinsics 
are ideal for writing your own 
wrappers for runtime library 
functions, when working  
with Pointer Checker-enabled 
and non-enabled modules,  
or when you are creating  
custom memory allocators and  
need bounds manipulation 
(checking and creating correct 
bounds), etc.“

to the pointer. Pointer Checker mitigates this for nearly all cases by 
checking the pointer against a copy of the pointer stored with the 
bounds information. If there is a mismatch, the bounds are set to allow 
access to any memory. An OOB error can still be reported, for example, 
when memory is extended by a realloc() in a non-enabled module, 
but bounds aren’t reset to new bounds. To prevent such incorrect  
OOB errors the solution is to write wrapper functions in non-enabled 
module that kills or sets the bounds correctly for any pointer returned 
or written by the functions. 

For instance, consider a case where a pointer is created by a RTL 
function my_realloc() from a non-enabled module as shown in 
Figure 16. If the memory allocator simply extends the memory  
allocated to pointer p and then returns the same pointer, an enabled 
module could use this pointer that has old bounds information. The 
Pointer Checker then reports an out-of-bounds error because it 
doesn’t know about the extension created by the realloc() function. 
The solution is to remove the existing bounds information from the 
pointer p and make new bounds using __chkp_kill_bounds() and __
chkp_make_bounds() intrinsic functions.

Identifying and reporting Out-of-Bounds Errors

The Pointer Checker provides a library function "__chkp_report_
control()” to control reporting of OOB errors found in the Pointer 
Checker-enabled application. The function takes a reporting control 
enumeration value for the first argument and the second parameter is 
NULL except when the enumeration is the call back function value for 
which a user-defined call back function is specified for the second 
argument. Table 1 shows the enumerations, which are also defined in 
the header file “chkp.h” located under the compiler include directory. 
Most commonly used enumerations are: __CHKP_REPORT_LOG 
which logs the OOB errors and continues until all errors are reported, 
and __CHKP_REPORT_TRACE_LOG which reports stack trace-back 
including instruction addresses from the OOB fault in the call chain. 
For example, Figure 4 shows the trace-back output for the  
enumeration __CHKP_REPORT_TRACE_LOG which is similar  
to back-trace output in the GNU or Intel® debugger. 

Guidelines 
When using Pointer Checker, use debug configuration (with –g option 
on Linux and /Zi on Windows) for testing and debugging so symbols 
are seen for better trace-back functionality. Use the –rdynamic linker 
option when compiling on Linux, so function names are output in the 
trace-back. And, compile with no optimization to avoid optimizing 
away memory accesses and also improve source code correlation. First 
catch OOB errors for write operations and then for read, since writes 
are more critical and can cause severe software vulnerabilities. Use 
__CHKP_REPORT_LOG in conjunction with __CHKP_REPORT_
TRACE_LOG report to analyze loop specific issues, as fixing one OOB 
error will fix all the loop-related OOB errors right away. 

Release your application with the Pointer Checker option disabled, 
as application size and execution time increases with Pointer Checker-
enabled applications. Runtime cost is high, about 2X-5X the execution 
time (based on some open source application runs), and code size 
increases from 20 percent to 100 percent or more depending on  
the application.

Summary
Pointer Checker is a key feature of the Intel® Parallel Studio XE 2013 
suite. Pointer Checker is a debug tool designed for application debugging 
and testing. Pointer Checker-enabled code and non-enabled code can 
coexist. Security benefits from catching software vulnerabilities prior to 
product release far outweigh the runtime performance overhead, 
which is the big trade-off. Get started with Pointer Checker and 
catch any out-of-bounds memory accesses before any 
memory corruption occurs.
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//==============================================================
// SAMPLE SOURCE CODE - SUBJECT TO THE TERMS OF SAMPLE CODE LICENSE AGREEMENT,
// http://software.intel.com/en-us/articles/intel-sam-
ple-source-code-license-agreement/
//
// Copyright 2012 Intel Corporation
//
// THIS FILE IS PROVIDED "AS IS" WITH NO WARRATIES, EXPRESS OR IMPLIED, INCLUDING BUT
// NOT LIMITED TO ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
// PURPOSE, NON-INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS.
// ===============================================================
//
// Toy memory allocator to demonstrate how to write custom allocator
// wrappers for check-pointers
//
// Allocates a large pool using malloc, then parcels out small pieces
// from it. By creating bounds for these parcelled out pieces their
// bounds will be automatically checked by check-pointers as well.
//
// Compile with -check-pointer=rw
// Run as:
// a.out len string len string len string
//
// Each pair of arguments will first allocate len bytes from the larger
// memory pool, and create bounds for it. It will then copy the next
// argument into this parcel as a string. For example:
//
// a.out 2 a 3 ab 3 abc
//
// The third pair will incur a bounds violation, whereas without
// check-pointers the program would be perfectly fine.

#include <stdio.h>
#include <stdlib.h>

#if defined(__INTEL_CHKP_ENABLED)
#include <chkp.h>
#endif

void *pool_base = (void*)0;
size_t pool_size = 0;

Appendix

A Sample Custom Allocator Wrapper for Pointer Checker

The example below demonstrates a custom allocator wrapper using Pointer Checker intrinsics:

Figure 15
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void init_pool(size_t sz)
{
 pool_base = malloc(sz);
 if (!pool_base) {
 fprintf(stderr,
 "Error: unable to allocate pool_base to size %lld\n",
 (long long)sz);
 }
 pool_ptr = pool_base;
 pool_size = sz;
}

void *get_one(size_t sz)
{
 void *p;
 if (sz < pool_size) {
 p = pool_ptr;
 pool_ptr += sz;
 pool_size -= sz;
#if defined(__INTEL_CHKP_ENABLED)
 p = (void*)__chkp_make_bounds(p, sz);
#endif
 return p;
 }
 fprintf(stderr, "Error: memory pool exhausted.\n");
 exit(0);
}

int
main(int argc, char *argv[])
{
 int i;
 init_pool(64);
 for (i = 1; i < argc; i+=2) {
 int sz = atoi(argv[i]);
 char *str = get_one(sz);
 if (i+1 < argc) {
 strcpy(str, argv[i+1]);
 }
 fprintf(stdout, "Copied to %#p \"%s\"\n", str, str);
 }
}
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Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that 
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets 
and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization 
on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are 
intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are 
reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more 
information regarding the specific instruction sets covered by this notice.

Notice revision #20110804
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