by Walter Shands,
Software Development
Engineer

Jsing Intel Software
Development Tools to

Analyze HMMER

This paper will highlight the features of Intel® Parallel Studio XE 2013 by using them to build
and analyze HMMER (http://hmmerjanelia.org/). HMMER is a set of applications, which includes
two, hmmsearch and hmmbuild, which are components of SPECint. We make use of event-
based sampling analysis in Intel® \VTune" Amplifier XE to find out which code paths, context
switches, or threading inactivity cause performance problems in hmmsearch. And, we'll utilize
the code optimization features of the Intel®* Composer XE compiler to improve the performance
of hmmsearch on Intel® Xeon® ES processors. In addition, we will show you how to use

Intel® Inspector XE to locate memory and threading errors introduced into hmmsearch.

.r"\’\‘i{

hmmsearch is used to search a protein sequence database
for homologs of protein sequences using profiles called hidden Markov
models. globins4.hmm contains the profiles and uniprot_trembl.fasta
is 310 GB sequence database.

hmmsearch is available in an MPI version, but we restricted our
experiments to the non-MP! flavor. We ran hmmsearch on a computer
with an 8-core Intel® Xeon® £5-2680 hyperthreaded processor at 2./
GHz with 23.4 GB of memory. We ran the application using GCC and
the Intel® C compiler, in both cases using the settings provided by the
configure script. The initial GCC default switches were;

gcc -std=gnu99 -03 -fomit-frame-pointer -ma-
lign-double -fstrict-aliasing —pthread —msse2

The application requires support for the SSEZ instruction set at a
minimum to support an algorithm optimized using intrinsics oriented
toward SSE2.

The default Intel® compiler flags were;

icc -03 -ansi_alias -pthread

A challenge in porting applications from one compiler to another
is making sure that there is support for the compiler options you use
to build your application. The Intel Ccompiler supports many of the
options that are valid on other compilers you may be using, such as
GCC. The compiler generates object files that are compatible with
GCC-generated object files, so you can compile part of your application
using the Intel compiler and the rest using GCC,

The -fomit-frame-pointer option is set when you specify
option =01, -02, or -03 when using the Intel Ccompiler (so there is
no need to include it). The -malign-double option aligns double,
long- double, and long-long types for better performance for systems
based on IA-32 architecture and is available in the Intel C compiler.

We started the application with this command line;

./hmmsearch globins4.hmm ../../
uniprot trembl.fasta

The next step is to locate the hotspots in the application using Intel
\/Tune Amplifier XE. This profiler tool uses low overhead techniques
10 quickly find multicore performance bottlenecks, without needing to
know the processor architecture or assembly code. Note that we do
not need to add code to the application to collect data.

To view source code lines of hmmsearch in \VTune Amplifier XE, we
need to include symbols in the release build—so we add the —g flag.
We added the —fno-inline-functions flag as well, this allows
us to see all of the code in question in the VVTune Amplifier XE
source view,

The VVTune Analyzer XE hotspots analysis shows where most of the
CPU activity is occurring in the application and the amount of CPU
activity on the threads over time. (Figure 1)

The VVTune Amplifier XE hotspots view tells us that the function
consuming the most CPU time is p7_MSVFilter, and double-clicking on
the function name displays the SSE intrinsics calls used in optimizing
the performance of the function. The assembly view shows us that the
Intel compiler utilized vector instructions, but is not taking advantage
of the 256-bit registers or AVX instructions on the Intel Xeon processor.
(Figure 2)

It's possible that we could compile the original C code for p7_
MSVFilter with the Intel compiler and help the compiler vectorize the
function for the instruction set available on the target machine, so
that the function is not limited to using 128 bit registers.

The thread timeline view shows that there is not much CPU time
used in the worker threads, but a large amount is used in one thread.
This turns out to be the thread that is reading the sequence
database file. (Figure 3)

“To achieve more significant

performance gains, the
problem of serialization of
the application due to the
file read has to be solved.”

-INEEEIEX]

r045hs

r035hs. r036hs | r037hs r038hs r03shs | r040hs

r025hs r010hs r030hs r027hs r026hs X | r024hs | r021hs >

A Hotspots - H , 0 Intel VTune Amplifier XE 2013

& Analysis Target Analysis Type | | H Summary | BYL:ERGLETY |+ Top-down Tree

Grouping: ~ Function / Cal Stack] | Pu Function/cPU Stack - CPU Time [=]
Function / Call Stack CPU Timew Module - Viewing 4 1 of 1 b selected stack(s)
7_MSVFilter 120447 (N hrmrmsearch | 100.0% (129.447s of 129.4475) |
qascii_ReadBlock 503805 (I hmmsearch

hmmsearch!p7_MSVFilter - msvfilter.c

7 _ViterbiFilter 15.3015. hmmsearch

eader_fasta 137670 hmmsearch
hmmsearch!pipeline_thread - hmmsearc|
7_ForwardParser 6923 hmmsearch

libpthread-2.12.solstart_thread

libc-2.12.s0!clone

hmmsearch!p7_Pipeline - p7_pipeline.c:555

sI_hmm_Forward 63315 hmmsearch
p7_omx_Reuse 27215 hmmsearch
Selected 1 row(s): 1294475 o
< [K n b
—

" T u T " "

QoQFQ=C# Sc 10s 155 205 25 30s 355 40s 455 S0s S5 60s 65s
pipeline_thread (0x9bbl
pipeline thread (09bb2
pipeline_thread (0x3bb3
pipeline_thread (0:x9bb5,
pipeline_thread (0x9bb6 CAE TG
pipeline_thread (0x9bb4
pipeline_thread (0:9bb8
pipeline_thread (0x3bba
pipeline_thread (0x9bb3
pipeline_thread (0x9bb7

hreads

@ Running
Mdudy CPU Time
PU Usage

Threads

CPU Usage |

< »

No filters are applied. ¥ | Proc n Module:

Call Stack Mo Only user functions n Inline Mo

Figure 1

o » » B8 [cPu time =
Address Line Assembly
0x42ffc9 147 vpsubusbx (%rl5), %xmm
0x42ffce 147 add $6x1e, %rl5
ox42ffd2 150 wvmovdqux (%rbx), %xmm8
0x42ffd6 148 vpmaxub %xmmll, S%xmml,

1 stack(s) selected. Viewing 4 1of1 >
Current stack is 100.0% of selection
[100.0% (129.447s of 129.447s) |

hmmsearch!p7_MSVFilter - msvfilter.c
hmmsearch!p7_Pipeline - p7_pipeline.c:

Selected 1 row(s): Highlighted 2 row(s): 29.68.... . /Sl hmmsearch!pipeline_thread - hmmsearc.
> @ D (<> libpthread-2.12.so!start_thread+0xd0 - [... |~
Figure 2
CoQuC-ce | ss10s 155 20s 255 30s 355 40s 455 50s S5s 60s 655 & | Thread
[Thread (0x9b -]| @8 Running
pipeline_thre ik CPU Time
pipeline_thre [7] CPU Usage
pipeline_thre -
E pipeline_thre Mk CRUITIE
£ pipeline_thik:
pipeline_thre
pipeline_thre
pipeline_thre
pipeline_thre v
CPU Usage
[o (BES

Figure 3

The application creates a number of threads equal to the number of HW threads on the
machine plus one, which in the case of a hyperthreaded machine is equal to the number of
hyperthreads plus one. In this case, there are 17 threads running. If we use the hmmsearch
-cpu 4 flag to limit the threads to five threads, VTune Amplifier XE shows that the application
scales well—unlike the situation with 17 threads. (Figure 4)

Evidence of this is the 67418-second runtime with 17 threads, which is worse than the
62.561-second runtime with four threads.

We can see that the top thread is the one reading the data file by filtering the results
by thread in the five-thread hotspot display. (Figure 5)

FIINEEEILE-X]

4| rodshs | r035hs | r036hs | r037hs | r038hs | r03%hs | r04ohs | r025hs | r010hs | r030hs | r027hs >C| r026hs | r024hs | r02ihs [

. Hotspots - Hotspots P]

& Analysis Target Analysis Type | | K1 Summary | [ECREINRTY |+% Top-down Tree

Grouping: [Function / Call Stack =] [cPu Function/cPU Stack - CPu Time [
Function / Call Stack CPU Timew Module | [Viewing 4 1of1 b selected stack(s)
p7_MSVFilter 1313135 hmmsearch H I| 100.0% (131.3135 0f 131.3135) |
® i_ReadBlock 47.093 h h —
#)sqascil_ReadSlod] d mmsearc hmmsearch!p?_MSVFilter - msvfilter.c
p7_ViterbiFilter 14.751s . hmmsearch — -
hmmsearch!p7_Pipeline - p7_pipeline.c:555
header_fasta 1131150 hmmsearch
hmmsearch!pip :_thread - hmmsearch....
esl_hmm_Forward 6.381;' hmmsearch S
p 12.s0lstart_thread
p7_ForwardParser 6.130s hmmsearch -
libc-212.s0lclone
loadbuf 2.571s| hmmsearch
p7_omx_Reuse 22695 hmmsearch
& logf 19985 hmmsearch
exp 1140s hmmsearch
107 Amenindnf Boviee e [
Selected 1 row(s): 1313135 -
< Ve »
r— T r 1 M T T M T T T LS =
ollet Tottots 55 10s 155 20s 255 30s 355 40s 455 S0s 555 60s < |/ Threads
Thread ((x9e21) a [Running
pipeline_thread (0:9e37 Uk CPU Time
S |pipeline_thread (0038
= zizeline_thread &aas s
= CPU Ti
¥ [pipeline thread (003 ik ime
CPU Usage
“« ro»

No filters are applied. v : Thread: JEUI

Call Stack Orly user functions | v [BIIES

Figure 4

-INEERILX)

4 r0sshs | r0SOhs | rO42hs | r04shs | r035hs | rO36hs | r037hs | r038hs | r03%hs | r040hs | r025hs | rO0hs | r030hs | r027hs X > =
A Hotspots - Hotspots & @ Intel VTune Amplifier XE 2013
@ Analysis Target Analysis Type | | K1 Summary | LYY |+ Top-down Tree
Grouping: [Thread / Function / Call Stack =] || cPU Function/cPU Stack - CPU Time (]
Thread / Function / Call Stack CPU Timew Module |« J|Viewing 4 10f13 b selected stacks)
2 Thread (0,0e21) 613945 | 76.7% (47.093s of 61.3945) |
5] i_ReadBlock 47.093s N h -
gy e s MMSEar.. 5 hmmsearch!sqascii_ReadBlock - esl_sgio_as...
[# header_fasta 11.3115- hmmsear ... he| . v
loadbr 25710 hmmaear. 1ol [l Pmmsearchtesl_sqio ReadBlock - eslsgio.c...
el =a GrowT, 0'150 hmmsearch!serial_master - hmmsearch.c:451
S Sow0 e = M hmmsearch!main - hmmesearch.c:289
[pthread_cond_broadcast 0.100s libpthrea ... pt
hmmsearch!_start
[tlend_fasta 0.080s hmmsear... er—
[p7_alidisplay_Print 0.030s hmmsear... pi
[# esl_sqio_IsAlignment 0.030s hmmsear... es
[# p7_tophits_Domains 0.010s hmmsear... pi
FELar] +hemads INAH#EncSoar noin. [
Selected 1 row(s): 61.394s -
< | 5
— - " " ' ") T —— T
SClet Tetuety 55 10s 155 20s 255 30s 355 40s 455 S50s 555 60s < |l¢/Threads
Thread (0x0e21) - @ Running
pipeline_thread (0037 ik CPU Time
S |pipeline_thread (0038 7] CPU Usage
E— pipeline_thread (0x9e39 ks CPU Time
pipeline_thread (0:9e3a

CPU Usage

<

: Thread: JEI n Module:

Figure 5

If we use the VTune Amplifier XE Locks -IINEEEIREX]
and Waits feature on the run with 17 threads uebiche

r036hs r037hs r038hs r03%hs r040hs r025hs r010hs r030hs r027hs r026hs r024hs

r021hs 029w X »

it shows us a large number of transitions, ocks and Waits - L d Wai j Intel VTune Amplifier XE 2013
indlcated by ye”ow “nes fl—om The thread Analysis Target Analysis Type | | K Summary | RIS |+ Top-down Tree
reading the sequence database file to Grouping: - [symc Object Functin ol tock) | [atng Cat stack [=]
. - . . B N « | Viewing 4 1 of 2 B selected stack(s)
worker threads. (Figure 6) Sync Object / Function / Call Stack Wait Time by Utiization e | : 999% 9197485 of 9202355) |
Dide @Poor @0k @Ideal [Over o Ti8s o Z I
hmmsearch uses a producer consumer & Condition Variable 0x4c3005d1 9202355 304,826 § hmmsearch - eslworkqueue_ WorkerUpdat...
model. ThIS iS \/\/here 3 rOdUCEF thread |abe|ed [esl_workqueue_WorkerUpdate 9202355 I 304,826 14805 t hmmsearch - pipeline_thread - esl_workg...
., D . (B Thread 0:37279b61 06605 16 0s libpthread-2.12.s0 - start_thread - esl_wor...
Thread (0Oxa0) in the graphic) puts data to be I Mutex D5l 2ed4e 02015 610 05 My 21250- clone- eslworkqueue.cO
Condition Variable 0xff489796 0.093s 136 0s.
processed on a queue that worker threads @ 5Stream /project/jwshands/bioinformatics/hmi| 00265 2 o
(labeled pipline_thread in the graphic) remove g el — e
when the producer thread signals them with [%] Thresds
Q2 Qe Q-
a broadcast message, resulting in a thread Do) ;":Mg
. plpelne_ rea xalba aits
transition from the producer thread to the pipeline thread (0xa06b Transitions
ipeline_thread (0xal6c L
worker thread. E zizeline_thread (Oxa06d || "‘L"’Z""‘""W
. . = |pipeline_thread (0xa06¢ oncurrency
By zooming in, we can see that the amount F ipeine thead (2067
' . ' ipeline_thread (0xa071
of thread running time (dark green) is less e

than thread waiting time (light green), pipeline thread (0xa070 L
indicating lost time to do productive work. T concarens|
(Figure 7)

Compare this with a zoom-in on the Call Stack Mode: [ERTTRTRRSY 1 \ode: [
thread view for hmmsearch using only four

< P o»

No filters are applied. v

- Figure 6
threads. Note that thread transitions from 9
the thread reading the data file, the top
’[hfead, tyDK:aHy resu”: il—] DFOdUCtive V\/OFk QoQFQ-Qe 32.1s 32.12s 32.14s 32.16s 32.18s 32.2s 32.22s 32.24s 32.26s 32.28s 32.3s =) [4] Thread)

R TNl 20 20000 000 0000000000 0000 0000000000000 00000000 0000000000t PPPeePeeeeeeds [+ @8 Running
to the worker thread. (Figure 8) pipeline_thre | [~ XK1 NI T B0 waits
, . ipeline_thre T 11l i L] il i
However, when using 17 threads in < [pipeline_thre i 1 T I

. @ ipeline_ thre | T LI m i 1] 1] 7L [¥] Thread Conc...
hmmsearch, many thread transitions do not £ [pipeline thre T 70T luuk Concurre...
result in work being done. (Figure 9) o CNi|missa | Hesssh| MMgasii | MusNi3 | immsddi | \emsii imsasis. msamidis

Zooming in even closer on the 17 thread _thre LI L LL| LLL LI LLL C
case, we can see these thread transitions are Treadcon- | - J
the result of a pthread_cond_broadcast call - .
igure
that tells the worker threads that a block of 9
data is ready on the work queue to be
processed. Only one thread at time can grab QoCFQ-Qe 25095 25.0955 2515 25.1055 25.11s 25.1155 & [AThread
[Thread (0x9f @8 Running

the block of data—so the o [pipeline_thre || @00 Waits
other threads must wait again. (Figure 10) £ pecnete i

' 5:5:::::‘::$ [“] Thread Conc...

When only five threads are used, only

iti read Con. k—\ uk Concurre...
about two threads are waiting to get a block Thread Con... [7

of data to process, and only one thread . . - .
goes unsatisfied. (Figure 11) Figure 8

All of this indicates that with more than
four threads, the hmmsearch pipeline threads QUQ#Q-Qe 33.765s 33.7665 33.767s 33.768s 33.769s 33.77s 33.771s 33.772s 33.773s 33.774s 33.775s rirsad g
become starved for data. In other words, the Thread ‘ft*harg e« . . . ;:“,a’:;'”g
thread reading the data file cannot provide data plpeiine tive O Transitions
fast enough to keep up with computation in oeine tire | AUIEZ LT
the worker threads. ipeline thre ||

From our analysis using VTune Amplifier 5 fﬂﬁ E[_
XE, we know that the most time-consuming = 1:22
code is the MSV algorithm, which has e e e
been optimized with SSE intrinisics in p7_ Jpeineitire — — — —
MSVFilter in the file msvfilter.c. The ! :::E q*_
intrinsic-optimized code also contains some - - o
optimizations over and above vectorization,)
so it will be faster. ARG

To see if the Intel compiler can effectively vectorize the nonintrinsic
optimized code, we compiled the application to use the unoptimized C
code in the function p7_GMSV in the file generic_msv.c. VTune Amplifier

XE again shows that the MSV algorithm is the hotspot. (Figure 12)
\/Tune Amplifier Xk also shows that the most time-consuming

part of the MSV algorithm is a single loop that is not taking advantage

of AVX instructions or YMM registers on the Intel Xeon processor.
(Figure 13)

The runtime of hmmsearch using this code is about four minutes
and 30 seconds.

CPU time: 4137.39u 5.02s
01:09:02.41 Elapsed: 00:04:30.08

IT we use the —opt-report flag for the Intel compiler, it will tell us
what inlining, loop, memory, vectorization, and parallelization
optimizations have been done for each function. For the p/GMSV
function, it tells us the loop was not vectorized.

generic _msv.c(80:7-80:7):VEC:p7_GMSV: loop
was not vectorized: existence of vector
dependence

By restructuring the code, we can enable the compiler to vectorize
the loop and generate code that takes advantage of Intel Xeon
architecture. The optimization report from the compiler indicates that
the two loops resulting from the restructuring were vectorized:

generic msv.c(88:7-88:7):VEC:p7_
GMSV: LOOP WAS VECTORIZED

generic_msv.c(108:7-108:7):VEC:p7_
GMSV: LOOP WAS VECTORIZED

In addition, the \VTune Amplifier X assembly view shows that AVX
instructions are being used along with the larger YMM registers.
(Figure 14)

The resulting runtime of the application is close to half of the
original runtime.

CPU time: 2207.74u 4.96s
00:36:52.69 Elapsed: 00:02:28.16

We can use Intel Inspector XE to check hmmsearch for threading and
memory errors. It gives detailed insight into application memory
and threading behavior to improve application reliability, and its
powerful thread checker and debugger make it easier to find latent
errors on the executed code path. Intel Inspector XE also finds
intermittent and nondeterministic errors, even if the error-causing
timing scenario does not happen.

33.77s

QEQO#C-Qe 6995 "733.7701s 33.7702{33.77028222s| 33.7704s 33.7705s 33.7706s 33.77(< |7l Thread .
Thread (0xa0 T T e ey [@8 Running Figure 10
pipeline_thre [Waits
p!pe:!neft:re Transitions
pipeline_thre
ST \E“\,_ [Thread Conc...
pipeline_thre X |Transitions
pipeline_thre i\ | Thread (0xa055) to pipeline_thread (0xa074) (33.770s to 33.771s)

- [Pipeline_thre lISync Object: Condition Variable 0x4c3005d1
@ |pipeline_thre Source File: esl_workqueue.c
£ [pipeline_thre Source Line: 395
= pipeline_thre Signal Source File: esl_workqueue.c
pipeline_thre Signal Source Line: 312
pipeline_thre | | | W | o ting
pipeline_thre L |Start: 33.770s Duration: 1.817ms
pipeline_thre I W sy nc Object: Condition Variable 0x4c3005d1
pipeline_thre | | Source File: esl_workqueue.c
pipeline_thre] | Source Line: 395
Signal Source File: esl_workqueue.c
Signal Source Line: 312

]

No filters are applied. [Re%

I8 Only user functions =

Grouping: |Sync Object / Function / Call Stack

3 Wait Spin
Cou.. Time

» Condition Variable 0x4c3005d1
> Mutex Ox5el12e94e

38| oms|

Selected 1 row(s): H 38 Oms

Thread (0x9f70) to pipeline_thread (0x9f86) (25.103s to 25.103s)
Sync Object: Condition Variable 0x4c3005d1

Source File: esl_workqueue.c

Source Line: 395

Signal Source File: esl_workqueue.c

Signal Source Line: 312

| conditior

Waiting

Start: 25.100s Duration:; 2.965ms

Sync Object: Condition Variable 0x4c3005d1
Source File: esl_workqueue.c

£ | >

Source Line: 395
BSignal Source File: esl_workqueue.c

“The Intel® C compiler
and libraries create
faster code, Intel®
VTune Amplifier XE
finds bottlenecks,
and Intel® Inspector XE
pinpoints memory
and threading errors
before they happen.
All this is of critical
importance when
developing applications
like HMMER."

| v | [Object Creation | VI Figure 11
1 stack(s) selected. Viewing 4 1of1 ©
Module Objecl cifTransitions

QPQQ-Qe 0235 2510255 251027s 2510295 ignal Source Line: 312
Thread (0x9f LS LLLALLLL
2 |pipeline_thre || 3] | ¥ 30 Waits
2 |pipeline_thre Transitions
- g:g::::g:::i l [~ Thread Conc...
duk Concurre...
Thread Con...
[<] || [>]»
IIMEEEI-X]
r061hs 062w r064ge r058hs r050hs r042hs r045hs r035hs r036hs r037hs r038hs r03shs r040hs X |

A Hotspots - H .0 Intel VTune Amplifier XE 2013
€ Analysis Target Analysis Type | | M Summary | BCY:RESURIY | <% Top-down Tree
Grouping: ~Function / Call Stack +] | cPu Function/cPU Stack - CPU Time]
Function / Call Stack CPU Timew Module Function (Fu ~] Viewing 4 10f2 b selected stack(s)
= p7_GMSV 473677 hmmsearch | p7_GMSV 99.9% (472.987s of 473.6775) |I
R p7_MSVFilter < p7_Pipeline ¢ pipeline_thre| 473.677s (N h h p7_GMSV
7 GVPt Y T P pene ” pipene e 2“015' h"""“mh prV't o hmmsearch!p?_GMSV - generic_msv.c
pISYIer! e mmsearch pl_sTRerol hmmsearchlp?_MSVFilter - msvilter.c:56
7_FLogsum 9.809s | hmmsearch p7_FLogsum
hmmsearch!p7_Pipeline - p7_pipeline.c:555
addbuf 37825 hmmsearch addbuf
#p7_GForward 2157s hmmsearch p7_GForward
[seebuf 21485 hmmsearch seebuf
extchar 11825 hmmsearch nextchar
eader_fasta 0827s hmmsearch header_fasta
[#p7_gmx_GrowTo 0.757s hmmsearch p7_gmx_GrowTo
=y . n720- [b el b s
Selected 1 row(s): 473 677s -
<[[I »
— - S y e ——— T 1y
QoQEF - 55 10s 155 20s 255 0s & |Lv] Threads
Thread (0x171c2) A @8 Running
pipeline_thread (05171 cf | | ‘E‘ Uk CPU Time
5 | pipeline_thread (0171 cl | | | sage
g zizeline_thread gxﬂld t__] oy
= CPUTI
F pipeline_thread (0171 cl | | e ime
pipeline_thread (0171 cf | | 1 |
“ ro»

B Module: 201

x No filters are applied. ¥ P

ss: JEU

(€I EIRWEEEY Only user functions n Inline M

Figure 12

Analysis Type B Collection Log © Summary <. Bottom-up

< Top-down Tree

&) = »> 5 8
CPUTIme (o Address Line Assembly CPU Time [~
79 W 9x4259cc 82 wmaxss Yomal, omeb, ‘xmed 0.120s|
Ba for (k = 1; k <= gn H.d“sl L 0x4259d0 82 waddssl OxB(%rcx, %rdx,4), hxmes, Lxemd 1.0915[E
Bl I] 0x4259d6 82 wmovssl ‘wom®, 8xc(%rl2,vrsi.4) 258895
82 M1, k) = WSC(| 2325385 | 0x4259dd 83 wmovssl Ox14(%rld,Nrll4), \esss 0.409| N
83 001,076 E) = EsL_ 206.038s [0x4253¢4 83 wmaxss Yomd, Nxmed, Yxmad 25,0365 h
B4 } 92425969 82 wvaddssl @wc(Vrld,vrll,a), wmal, veel 996635
BS 0x425910 83 wmovssl ‘omeB, Ox14(%rld,%r1l,4) 0.1728]
86 /e 9x4259f7 82 wmovssl @xc(%rlS,%rsi,4), ‘xmmlo 2712750
87 for (k= 1; k <= gf 0x4255fe B2 wmaxss ‘omall, \xeml0, \xmml@ 0.160s|
B8 { 425203 82 waddssl @x10(%rcx,%rdx,4), %o=eld, om 0,090;[
89 if (MiL-1,k-1) = 02425209 82 wmovssl %ammld, Bx18(%r12,%rsi,4) 255485
Selected 1 rowl(s): 232538 .| Highlighted 23 rowis): 232.5385 [
m 0 -] o
Figure 13

Intel Inspector XE finds memory leaks,
corruption, and inconsistent memory API
usage, as well as data races, deadlocks, and
memory accesses between threads.

As with Intel VTune Amplifier XE, we don't
need to create a special build or add code to
the application to collect data.

Because there is significant overhead in
detecting memory and threading bugs, we
launch hmmsearch using a smaller sequence
database file, as well as an application
option that reduces the number of threads.

When we run Intel Inspector XEin the
Detect Memory Problems mode, a few
uninitialized memory accesses are exposed.
(Figure 15)

Right-clicking on a line in the Detect
Memory Problems pane brings up a
description of an uninitialized memory
access problem: (Figure 16)

Intel Inspector XE running in Locate
Deadlocks and Data Races mode did not
detect any issues. (Figure 17)

In order to increase application
performance, we can take advantage of
Intel® Cilk” Plus in the Intel compiler. Cilk Plus
is an extension to C and C++ that offers a
quick, easy, and reliable way to improve
the performance of programs on multicore
processors, It is an open standard and will
soon be available in GCC4.7 Cilk Plus, included
in the Intel® C/C++ compiler, allows you to
improve performance by adding parallelism to
new or existing C or C++ programs using only
three keywords: cilk_for, cilk_
spawn, and cilk_sync.

@ Analysis Target Analysis Type B Collection Log |1 Summary + Bottom-up « Top-down Tree m
[Souce |[Assembly] []= = > »» =
Line Source CPUTIM® Address Line Assembly CPUTIme =
84 WXL, pT6_E) = ESL_MAX(XH s 0x425856 93 vinsertf12s $8x1, “xsall, Vysald, vyms 4845
f1] } Oxd425a%¢ 93 vaddps wymal2, wyma2, Yyeal 06805 |
86 =/ Ox425a61 91 vextractfl28 $6x1, Yyma2, ‘omml3 &ﬂZs.
a7 Bxd25867 91 wvmovssl %xmm?, Oxc(%rld %rl2.1) Ji!ﬂl.
88 for (k= 1; k <= gu-2M; k 5.126s @x425abe 91 vextractpsl $6x1, “xmm?, 9x18(%r14,%r ﬂ.ml t
89 { 0x425a76 91 vextidbctpsl $0x2, wxmm2, dx24(%rlé,vr 8.007s[)
98 if (eec{i-1,k-1) > (0{i 554525 Gx425aTe 91 vextractpsl $6x3, %ma?, @x3@(wrld,vr 4.34%))
91 ORI T exd2sass 91 vmovssl \xmal3, @x3civrld,srl2,1) ansf
92 else @x425a8d 91 vextractpsl $6x1, %ommll, Ox48(%rld % 51!5!.
93 o(i,k) = MSCIk) » XMX 74.768s x425a9% 91 vextractpsl $6x2, %xmml3, @xS4(%rl4.% G.ﬁcs.
[T } Ox425a9d 91 vextractpsl $0x3, ‘omald, @x60(%r1d . 4716sf)
Selected 1 row(s):| 109.441s 0 Highlighted 25 rowis): 109.441s "0 -
om0 — S
Figure 14
File View Help
‘H bk o S o
r024mi3 = 1034mi3. .
& . Mei e nom el Inspector EILAE
[]r034mi3|
@ Summary
IDa @ Problem Sources Modules Object Si... State)-:' Severity B
P4 @ Uninitialized memory access p7_trace.c hmmse... New Error 9 item(s)
P5 @ Uninitialized partial memor... esl_sq.c; p7_alidi... hmmse... New Problem
P6 @ Uninitialized partial memor... p7_oprofile.c hmmse... New Invalid partial memory access 2 item(s)
P7 @ Uninitialized partial memor... p7_tophits.c hmmse... New [v/ Memory leak 1item(s)
Uninitialized memory access 2item(s)
ID Descriptiona Source Function Module Object Size Offset Uninitialized partial memory access 4 item(s)
X Allocation site [esl_sq.c:1732 sq_init hmmsea... 1 source
1730 P easel.c 2item(s)
1731 ESL_ALLOC(sq->name, sizeof(char) * sq->nalloc); esl_sq.c 1item(s)
1732 ESL_ALLOC(sq->acc, sizeof(char) * sq->aalloc); hmmsearch.c 1item(s)
1733 ESL_ALLOC(sq->desc, sizeof(char) * sq->dalloc); e .
1734 ESL ALLOC(sq->source, sizeof(char) * sq->srcalloc); p7_alidisplay.c Z!tem(s)
— — p7_hmm.c 1item(s)
“X Read B p7_alidisplay.... p7_alidisplay_Cr... hmmsea... L]
p7_oprofile.c 1item(s)
95 hmm_desclen = (om->desc != NULL ? strlen(om->desc) : 8); n += hmm 7 tophits. 28
96 sq_namelen = strlen(sq->name); n += sq_| P7_tophits.c fem(s)
97 sq acclen = strlen(sq->acc); n#=5q d|] p7_tracec 2item(s)
98 sq_desclen = strlen(sq->desc); n += sq_| Module
L hmmsearch 9item(s) [
Figure 15
5] Help: Uninitialized Partial Memory Access - 8 %

«® 23 & F
Uninitialized Partial Memory Access

Occurs when a read instruction references a block (2-bytes or more) of memory where part of the block is uninitialized.

1 2

Allocation site Read

E,
3
[[»] Code Location Description

1 Allocation site If present, represents the location and associated call stack from which the memory block

containing the offending address was allocated.
2 Read Represents the instruction and associated call stack responsible for the partial uninitialized

access.

If no allocation or deallocation is associated with this problem, the memory address might be in

stack space. |
Example

struct person
{

unsigned char age;
char firstInitial;
char middleInitial;
char lastInitial;

Done

Figure 16

File View Help

‘H Ik o2 S
1024mi3... | 034mi3...| ro3stis | -
M Locate Deadlocks and Data Races Intel Inspector
e : - [Jro34mi3
@ Target Analysis Type| I Collection Log m 1 r035ti3
Severity
Problem
No Problems Detected Source
Intel Inspector XE 2011 detected no problems at this analysis scope. If this result is Module
unexpected, try rerunning the target using an analysis type with a wider scope. Press
F1 for more information. State
Suppressed
Investigated
I . ——

Figure 17

=N YEEE I

| ro61hs X -

i Hotspots

+% Top-down Tree

@ Analysis Target Analysis Type | | M Summary| BY:ER0ue

CPU Function/CPU Stack - CPU Time
Function (Full . [Viewing 4 10f11 b selected stackis)
p7_MSVFilter 9 I 22.5% (24,4895 of 108.6455) \

Grouping: ~[Function / Cal Stack 7]

Function / Call Stack CPU Timew Module

hmmsearch

p7_MSVFilter

= I hmmsearchlp? MSVFilter - msvfifterc *

< QK 3 2o "
T . . . = T T w
WO 0 S0s 555 | Threads
Thread (0x11d1f) ~ @ Running

Gilk Worker (Ox11041) Uik CPU Time
Gilk Worker (0x11d37) e

Gilk Worker (0x11d44) S
Cilk Worker (0d1d30) iuk CPUTime

Cilk Worker (0x11d3b)
Cilk Worker (0x11d38)
Cilk Worker (0x11d3d)
Cilk Worker (0x11d39)
Cilk Worker (0x11d36)
Cilk Worker (0x11d3c)
Cilk Worker (0x11d3a)
Cilk Worker (0x11d3e)
Cilk Worker (0x11d40)
Cilk Worker (0x11d43)
Cilk Worker (0x11d42) v

Threads

CPU Usage | |

< b o»

No filters are applied.

Figure 18

- I == XD
| ro8ths | ro62lw x| -

M Locks and Waits - Locks ¢

+% Top-down Tree

Analysis Type| | ¥ Summary | B YRRt

@ Analysis Target

Grouping: ~[Sync Object / Function / Cal Stack]] waitng Call Stack [=]
. [Viewing 4 10f11 b selected stack(s)
Sync Object / Function / Call Stack R
Bidie @ Poor [Ok @ldeal [Over J ‘ 262% U83.505% of T01.4845) |
2 Mutex 0646e5193 701454 S Y | vscorch - _SUO - hmmsearch.c -
@intel Cilk Plus Scheduler OxcSce0abf 1799750 lbcilkts:s0.5 - call_cilk for_loop. body<unsigned in, vor L)
@ Stream /project/j uniprot tremblfasta 0xc2374bb8 00415 libcilkrts.so.5 - cilk_for_recursive<unsigned int, void (*...
Selected 1 row(s): | 701 ~ B jibcilkrts.50.5 - __SUO - hmmsearch.c:0
u Vm) il ok
. g " u ' u ' ' T T W ! + | [7] Threads
QOO 55 105 155 2 255 s 355 40s 455 505 555 K
Thieod O1ci8) | B Tl | - @ Running
Cilk Worker @d1e33) || | — O Waits
Cilk Worker (0d1e3d) || | =] Frsorg
Cilk Worker (0x11e34) | |]
] Thread Concurrency
Cilk Worker (0d1e31) || § — rre
[l Worker (01e35) || | —|= il Concurrency
§ [Cilk- Worker (0x11e3b) || | =]
£ [Cilk Worker (0:d1e30) || § -
Cilk Worker (0d1e38) | | | =]
Gilk Worker (0xi1e32) || | =0
Cilk Worker (0d1e2f) || | —
Cilk Worker (0d1e30 || |]
Cilk Worker (0d1e37) | | | =)
Thread Concurrency | | u
< Y
No filters are applied. P [AI] = ad: JE] = [AI] = [AI] =
Only user functions | de: [
Figure 19

We use Cilk Plus to replace the code
that manages threads, mutexes, condition
variables, and the work queue with the added
benefit of better scheduling. However, we
must still synchronize threads on the data
file read, which results in serializing a portion
of the application.

In the Intel \VTune Amplifier XE Hotspots
graphic of an hmmsearch run, you can see
that because of the synchronization resulting
from mutexes around the code reading the
sequence database file, the CPUs are not
fully utilized. But the Cilk Plus implementation
has a shorter runtime at 58.272 seconds
compared to the original runtime of 67418
seconds. (Figure 18)

IT we run a VTune Amplifier XE locks and
waits analysis we can see that there are still
many thread transitions. (Figure 19)

[T we zoom into the thread pane in the locks
and waits analysis, we see that the thread
transitions are between worker threads, and
that they involve the mutex that protects the
file read, which is now carried out by each
worker thread. (Figure 20)

QoQ+Q-Qe# 15.165 15.185 15.25 15.22s 15.215.25075565 15285 1535 & |MThread
Thread (0x11c16) | j 8 Running
Cilk Worker (0x11e33) |+ I [) Waits
Cilk Worker (0x11e3d) I 1T I Transitions
Cilk Worker (0x11e34) || NN] |
Cilk Worker (0x11€31) T | T — EiThread Conc...
Cilk Worker (0x11e35) B b | | | “-ﬁ ikuk Concurre...

Gilk Worker (0x11e3b) *ﬁi—ﬁT T :
T ransitions
Cilk Worker (0x11e30) | |SE_—_ Cilk Worker (0x11e3d) to Cilk Worker (0x11e3c) (15.251s to 15.251s)

Cilk Worker (0x11e38) lg -
, Sync Object: Mutex 0x646e5f93
Cilk Worker (0x11e32) I <o rce File: hmmsearch.c

Cilk Worker (0x11e2f) Source Line: 1539

Cilk Worker (0x11e3c) Signal Source File: hmmsearch.c

| & |
Cilk Worker (0x11e37) =y T § & |] Signal Source Line: 1542
| & |
I ¢ ES—
|

Thread

Cilk Worker (0x11e36)
Cilk Worker (0x11e39)
Cilk Worker (0x11e3a)

Waiting

Start: 15.205s Duration: 68.712ms
Sync Object: Mutex 0x646e5f93
Source File: hmmsearch.c

Source Line: 1539

Signal Source File: hmmsearch.c
Signal Source Line: 1542

Thread Concurrency

Figure 20

-IMEEEIE- X0
r064ge X -
Intel VTune Amplifier XE 2013

r061hs | r062w

oration /& @

Analysis Type| | M Summary | [CYRTeneny | o

) General Exploration - General Exp

@ Analysis Target Top-down Tree

Grouping: ~[Function / Cal Stack v)

Hardware Event Count Filled Pipeline Slots Unfilled Pipeline Slots (Stalls) -
Pl | Reieed Back-end B Front-end -

Function / Call Stack Cancelled Module
CUC ':rﬁg;'g‘um'v INST_RETIRED.ANY Rate pipeline Pipeline ;":I;‘:E p?":lz‘:e
Slots Slots s e
p7_MSVFilter 291,664,000000 1,029,496,000,000 0.283 0797 0001 0094 0108 hmmsearch P
sqascii_ReadBlock 105,490,000,000 257,152,000,000 0410 0522 0056 0273 0148 hmmsearch s
2] 40 426 000 000 119962000000 0337 0764 0035 0132 0069

|A significant proportion of pipeline slots are remaining empty. When operations take too long in the back-end, they introduce bubbles in the pipeline that ultimately cause fewer pipeline slots containing useful work to be
retired per cyde than the machine is capable of supporting. This opportunity cost results in slower execution. Long-atency operations like divides and memory operations can cause this, as can too many operations
[hibeing directed to a single execution port (for example, more mutiply operations arriving in the back-end per cydle than the execution unit can support).

B hveshold: (((1 ((Hardware Event Count where Hardware Event Type is IDQ_UOPS_NOT_DELIVERED.CORE +Hardware Event Count where Hardware Event Type is UOPS_ISSUED.ANY) / (Clockticks where
& is CPU_CLK_UNHALTED.THREAD *4))) > 0.2) * (Clockticks where Hardware Event Type is CPU_CLK_UNHALTED. THREAD / query all Clockticks where Hardware Event Type is

[CPU_CLK_ IJ\IHALTEDTPREAD >0.05))
™ » J < i] S
y y ' ’ . . ' ' ’ y . ' e
QIQEQ-Q» 55 10s 155 205 255 305 355 40s 455 50s 555 60s & |[Threads

Thread (0x0) o @ Running

Thread (0x10) 3 ik Hardware Ev..
i | IIBES U ETS03) Hardware Events
T —
E ™ Thread 032¢b) Mk Hardware Ev...

Thread (0xd2ec6) <

Hardware Events ol b

L sttt it s et i e b

* No filters are applied. % | proce
Timeline Hardware Event: [ARTIHEPUIDIOACTIVE |y

Figure 21

One of the other powerful features of Cilk
Plus is the C/C++ language extension for
array notations. This Intel-specific language
extension provides data parallel array nota-
tions, which enable compiler parallelization and
vectorization with less reliance on alias and
dependence analysis.

To achieve more significant performance
gains, the problem of serialization of the
application due to the file read has to be
solved. Reading the data into memory prior
1o computation is not realistic when using
the uniprot_trembl.fasta data file, because
we would exceed memory capacity on our
machine, although it enough memory was
available it would speed up subsequent
computations using the same data.

Further performance gains can be achieved
by taking advantage of Intel compiler
options. Since the Intel compiler default
instruction set is SSE2 and the target

10

Call Stack Mode: [EuIT e R dEd Iniine Mode

machine is Intel Xeon, it would be a good idea
10 take advantage of AVX instructions and
larger register size by using the —xhost
switch that will generate an instruction set
up to the highest level supported on the
compilation host.

Another important compiler option is —
ipo, which enables interprocedural optimi-
zation between files. This is also called multi-
file interprocedural optimization (multifile
IPO) or whole program optimization (WPQ).
When you specify this option, the compiler
performs inline function expansion for calls to
functions defined in separate files.

For help on finding out what to do to help
the Intel compiler vectorize or parallelize
loops we can use the —guide flag, which
provides a report without producing objects
or executables. The guided auto-parallelization
feature of the Intel compiler is a tool that
offers selective advice, resulting in better

performance of serially coded applications.
The advice typically falls under three broad
categories: source code modification, use of
pragmas, and addition of compiler options.

Here is one of the suggestions after using
the option in hmmsearch:

esl vectorops.c(161):
remark #30536: (LOOP) Add
-fargument-noalias option
for better type-based
disambiguation analysis by
the compiler, if appropriate
(the option will apply for
the entire compilation).
This will improve
optimizations such as
vectorization for the loop
at line 161.

Adding the —parallel switch allows the Intel compiler to
detect simply structured loops that may be executed in parallel, and
automatically generates multithreaded code for them. I you use
guided auto-parallelization options along with —parallel, the
compiler may suggest advice on further parallelizing opportunities in
your application:

msvfilter.c(106): remark #30525: (PAR)
Insert a “#pragma loop count min(1024)"”
statement right before the loop at line
106 to parallelize the loop. [VERIFY]
Make sure that the loop has a minimum
of 1024 iterations.

We can also use the VTune Amplifier XE hardware event counter
collection to get insight into bottlenecks in application code affecting
performance. \/Tune Amplifier XE highlights collected data indicative
of performance problems that should be investigated. Here is one
example of an hmmsearch run. (Figure 21)

Conclusion

Intel® Software Development Tools help you boost application
performance and increase the code quality, security, and reliability
needed by high performance computing and enterprise applications.
The Intel C compiler and libraries create faster code, Intel VTune
Amplifier XE finds bottlenecks, and Intel Inspector XE pinpoints memory
and threading errors before they happen. All this is of critical importance
when developing applications like HMMER for the latest generation

of multicore processors. O

Learn how Intel® Advisor XE can help improve
parallelization productivity.

BY RAVI VEMURI

What do space exploration, oil and natural gas exploration, Holly-
wood movies, and military operations have in common? Modeling,
simulation, exploration, storyboarding, and reconnaissance are
some of the phrases that come to mind. They are intended to
reduce the cost of wrong choices, failures, and missteps, and help
projects succeed and be more productive.

Software parallelization likewise can also benefit from parallelism
reconnaissance in which code is evaluated for suitability for
parallelization. Until now, there have been limited tools support to
do this. However, Intel® Advisor XE 2013 changes this and helps
the world of parallelization leapfrog forward. Intel® Advisor XE

is the newest component of the Intel® Parallel Studio XE suite

of products.

Software parallelization is potentially destabilizing to code, risky,
expensive, and complex. Current trial and error approaches are not
productive and there is considerable risk of dead ends. Embark-
ing on code parallelization based on measured data (for example,
otspots) is perhaps better, but is likewise mostly a hit or miss.

Intel® Advisor XE is built to help you find where to add

parallelism to your code, Use it to discover the parallel performance
(scalability) and code/data sharing issues (correctness) of
possible parallel code regions. It lets you model several different
regions within your program at once for parallel scalability and
correctness. The results help you make judicious choices about
which regions of code to not parallelize (to avoid dead ends), and
which regions of code to actually parallelize to reap the multicore
performance benefits.

Using this methodology helps you fix data sharing issues before
they happen. Even as you prepare the code for parallelization

by fixing the correctness issues, you can continue to use your
existing test framewaorks to validate your program—as it remains
functionally unchanged and correct.

Use of Intel® Advisor XE in your parallelization efforts is very
likely to reduce risk and increase the reward. Moreover, the to
empowers everyone in the software organization wit
to productively parallelize, instead of the cur

11

http://software.intel.com/en-us/blogs/author/ravi/
http://software.intel.com/en-us/intel-advisor-xe
http://software.intel.com/en-us/intel-advisor-xe

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets
and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization
on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are
intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are
reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more
information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

© 2012, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Core, Cilk, VTune, and Xeon are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

12

