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Jsing Intel Software
Development Tools to

Analyze HMMER

This paper will highlight the features of Intel® Parallel Studio XE 2013 by using them to build
and analyze HMMER (http://hmmerjanelia.org/). HMMER is a set of applications, which includes
two, hmmsearch and hmmbuild, which are components of SPECint. We make use of event-
based sampling analysis in Intel® \VTune" Amplifier XE to find out which code paths, context
switches, or threading inactivity cause performance problems in hmmsearch. And, we'll utilize
the code optimization features of the Intel®* Composer XE compiler to improve the performance
of hmmsearch on Intel® Xeon® ES processors. In addition, we will show you how to use

Intel® Inspector XE to locate memory and threading errors introduced into hmmsearch.
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hmmsearch is used to search a protein sequence database
for homologs of protein sequences using profiles called hidden Markov
models. globins4.hmm contains the profiles and uniprot_trembl.fasta
is 310 GB sequence database.

hmmsearch is available in an MPI version, but we restricted our
experiments to the non-MP! flavor. We ran hmmsearch on a computer
with an 8-core Intel® Xeon® £5-2680 hyperthreaded processor at 2./
GHz with 23.4 GB of memory. We ran the application using GCC and
the Intel® C compiler, in both cases using the settings provided by the
configure script. The initial GCC default switches were;

gcc -std=gnu99 -03 -fomit-frame-pointer -ma-
lign-double -fstrict-aliasing —pthread —msse2

The application requires support for the SSEZ instruction set at a
minimum to support an algorithm optimized using intrinsics oriented
toward SSE2.

The default Intel® compiler flags were;

icc -03 -ansi_alias -pthread

A challenge in porting applications from one compiler to another
is making sure that there is support for the compiler options you use
to build your application. The Intel Ccompiler supports many of the
options that are valid on other compilers you may be using, such as
GCC. The compiler generates object files that are compatible with
GCC-generated object files, so you can compile part of your application
using the Intel compiler and the rest using GCC,

The -fomit-frame-pointer option is set when you specify
option =01, -02, or -03 when using the Intel Ccompiler (so there is
no need to include it). The -malign-double option aligns double,
long- double, and long-long types for better performance for systems
based on IA-32 architecture and is available in the Intel C compiler.

We started the application with this command line;

./hmmsearch globins4.hmm ../../
uniprot trembl.fasta

The next step is to locate the hotspots in the application using Intel
\/Tune Amplifier XE. This profiler tool uses low overhead techniques
10 quickly find multicore performance bottlenecks, without needing to
know the processor architecture or assembly code. Note that we do
not need to add code to the application to collect data.

To view source code lines of hmmsearch in \VTune Amplifier XE, we
need to include symbols in the release build—so we add the —g flag.
We added the —fno-inline-functions flag as well, this allows
us to see all of the code in question in the VVTune Amplifier XE
source view,

The VVTune Analyzer XE hotspots analysis shows where most of the
CPU activity is occurring in the application and the amount of CPU
activity on the threads over time. (Figure 1)

The VVTune Amplifier XE hotspots view tells us that the function
consuming the most CPU time is p7_MSVFilter, and double-clicking on
the function name displays the SSE intrinsics calls used in optimizing
the performance of the function. The assembly view shows us that the
Intel compiler utilized vector instructions, but is not taking advantage
of the 256-bit registers or AVX instructions on the Intel Xeon processor.
(Figure 2)

It's possible that we could compile the original C code for p7_
MSVFilter with the Intel compiler and help the compiler vectorize the
function for the instruction set available on the target machine, so
that the function is not limited to using 128 bit registers.

The thread timeline view shows that there is not much CPU time
used in the worker threads, but a large amount is used in one thread.
This turns out to be the thread that is reading the sequence
database file. (Figure 3)

“To achieve more significant

performance gains, the
problem of serialization of
the application due to the
file read has to be solved.”
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The application creates a number of threads equal to the number of HW threads on the
machine plus one, which in the case of a hyperthreaded machine is equal to the number of
hyperthreads plus one. In this case, there are 17 threads running. If we use the hmmsearch
-cpu 4 flag to limit the threads to five threads, VTune Amplifier XE shows that the application
scales well—unlike the situation with 17 threads. (Figure 4)

Evidence of this is the 67418-second runtime with 17 threads, which is worse than the
62.561-second runtime with four threads.

We can see that the top thread is the one reading the data file by filtering the results
by thread in the five-thread hotspot display. (Figure 5)
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To see if the Intel compiler can effectively vectorize the nonintrinsic
optimized code, we compiled the application to use the unoptimized C
code in the function p7_GMSV in the file generic_msv.c. VTune Amplifier

XE again shows that the MSV algorithm is the hotspot. (Figure 12)
\/Tune Amplifier Xk also shows that the most time-consuming

part of the MSV algorithm is a single loop that is not taking advantage

of AVX instructions or YMM registers on the Intel Xeon processor.
(Figure 13)

The runtime of hmmsearch using this code is about four minutes
and 30 seconds.

# CPU time: 4137.39u 5.02s
01:09:02.41 Elapsed: 00:04:30.08

IT we use the —opt-report flag for the Intel compiler, it will tell us
what inlining, loop, memory, vectorization, and parallelization
optimizations have been done for each function. For the p/GMSV
function, it tells us the loop was not vectorized.

generic _msv.c(80:7-80:7):VEC:p7_GMSV: loop
was not vectorized: existence of vector
dependence

By restructuring the code, we can enable the compiler to vectorize
the loop and generate code that takes advantage of Intel Xeon
architecture. The optimization report from the compiler indicates that
the two loops resulting from the restructuring were vectorized:

generic msv.c(88:7-88:7):VEC:p7_
GMSV: LOOP WAS VECTORIZED

generic_msv.c(108:7-108:7):VEC:p7_
GMSV: LOOP WAS VECTORIZED

In addition, the \VTune Amplifier X assembly view shows that AVX
instructions are being used along with the larger YMM registers.
(Figure 14)

The resulting runtime of the application is close to half of the
original runtime.

# CPU time: 2207.74u 4.96s
00:36:52.69 Elapsed: 00:02:28.16

We can use Intel Inspector XE to check hmmsearch for threading and
memory errors. It gives detailed insight into application memory
and threading behavior to improve application reliability, and its
powerful thread checker and debugger make it easier to find latent
errors on the executed code path. Intel Inspector XE also finds
intermittent and nondeterministic errors, even if the error-causing
timing scenario does not happen.
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“The Intel® C compiler
and libraries create
faster code, Intel®
VTune Amplifier XE
finds bottlenecks,
and Intel® Inspector XE
pinpoints memory
and threading errors
before they happen.
All this is of critical
importance when
developing applications
like HMMER."
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Intel Inspector XE finds memory leaks,
corruption, and inconsistent memory API
usage, as well as data races, deadlocks, and
memory accesses between threads.

As with Intel VTune Amplifier XE, we don't
need to create a special build or add code to
the application to collect data.

Because there is significant overhead in
detecting memory and threading bugs, we
launch hmmsearch using a smaller sequence
database file, as well as an application
option that reduces the number of threads.

When we run Intel Inspector XEin the
Detect Memory Problems mode, a few
uninitialized memory accesses are exposed.
(Figure 15)

Right-clicking on a line in the Detect
Memory Problems pane brings up a
description of an uninitialized memory
access problem: (Figure 16)

Intel Inspector XE running in Locate
Deadlocks and Data Races mode did not
detect any issues. (Figure 17)

In order to increase application
performance, we can take advantage of
Intel® Cilk” Plus in the Intel compiler. Cilk Plus
is an extension to C and C++ that offers a
quick, easy, and reliable way to improve
the performance of programs on multicore
processors, It is an open standard and will
soon be available in GCC4.7 Cilk Plus, included
in the Intel® C/C++ compiler, allows you to
improve performance by adding parallelism to
new or existing C or C++ programs using only
three keywords: cilk_for, cilk_
spawn, and cilk_sync.
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«® 23 & F
Uninitialized Partial Memory Access

Occurs when a read instruction references a block (2-bytes or more) of memory where part of the block is uninitialized.

1 2

Allocation site Read

E,
3
[[»] Code Location Description

1 Allocation site If present, represents the location and associated call stack from which the memory block

containing the offending address was allocated.
2 Read Represents the instruction and associated call stack responsible for the partial uninitialized

access.

If no allocation or deallocation is associated with this problem, the memory address might be in

stack space. |
Example

struct person
{

unsigned char age;
char firstInitial;
char middleInitial;
char lastInitial;

Done

Figure 16
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We use Cilk Plus to replace the code
that manages threads, mutexes, condition
variables, and the work queue with the added
benefit of better scheduling. However, we
must still synchronize threads on the data
file read, which results in serializing a portion
of the application.

In the Intel \VTune Amplifier XE Hotspots
graphic of an hmmsearch run, you can see
that because of the synchronization resulting
from mutexes around the code reading the
sequence database file, the CPUs are not
fully utilized. But the Cilk Plus implementation
has a shorter runtime at 58.272 seconds
compared to the original runtime of 67418
seconds. (Figure 18)

IT we run a VTune Amplifier XE locks and
waits analysis we can see that there are still
many thread transitions. (Figure 19)

[T we zoom into the thread pane in the locks
and waits analysis, we see that the thread
transitions are between worker threads, and
that they involve the mutex that protects the
file read, which is now carried out by each
worker thread. (Figure 20)
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One of the other powerful features of Cilk
Plus is the C/C++ language extension for
array notations. This Intel-specific language
extension provides data parallel array nota-
tions, which enable compiler parallelization and
vectorization with less reliance on alias and
dependence analysis.

To achieve more significant performance
gains, the problem of serialization of the
application due to the file read has to be
solved. Reading the data into memory prior
1o computation is not realistic when using
the uniprot_trembl.fasta data file, because
we would exceed memory capacity on our
machine, although it enough memory was
available it would speed up subsequent
computations using the same data.

Further performance gains can be achieved
by taking advantage of Intel compiler
options. Since the Intel compiler default
instruction set is SSE2 and the target

10
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machine is Intel Xeon, it would be a good idea
10 take advantage of AVX instructions and
larger register size by using the —xhost
switch that will generate an instruction set
up to the highest level supported on the
compilation host.

Another important compiler option is —
ipo, which enables interprocedural optimi-
zation between files. This is also called multi-
file interprocedural optimization (multifile
IPO) or whole program optimization (WPQ).
When you specify this option, the compiler
performs inline function expansion for calls to
functions defined in separate files.

For help on finding out what to do to help
the Intel compiler vectorize or parallelize
loops we can use the —guide flag, which
provides a report without producing objects
or executables. The guided auto-parallelization
feature of the Intel compiler is a tool that
offers selective advice, resulting in better

performance of serially coded applications.
The advice typically falls under three broad
categories: source code modification, use of
pragmas, and addition of compiler options.

Here is one of the suggestions after using
the option in hmmsearch:

esl vectorops.c(161):
remark #30536: (LOOP) Add
-fargument-noalias option
for better type-based
disambiguation analysis by
the compiler, if appropriate
(the option will apply for
the entire compilation).
This will improve
optimizations such as
vectorization for the loop
at line 161.



Adding the —parallel switch allows the Intel compiler to
detect simply structured loops that may be executed in parallel, and
automatically generates multithreaded code for them. I you use
guided auto-parallelization options along with —parallel, the
compiler may suggest advice on further parallelizing opportunities in
your application:

msvfilter.c(106): remark #30525: (PAR)
Insert a “#pragma loop count min(1024)"”
statement right before the loop at line
106 to parallelize the loop. [VERIFY]
Make sure that the loop has a minimum
of 1024 iterations.

We can also use the VTune Amplifier XE hardware event counter
collection to get insight into bottlenecks in application code affecting
performance. \/Tune Amplifier XE highlights collected data indicative
of performance problems that should be investigated. Here is one
example of an hmmsearch run. (Figure 21)

Conclusion

Intel® Software Development Tools help you boost application
performance and increase the code quality, security, and reliability
needed by high performance computing and enterprise applications.
The Intel C compiler and libraries create faster code, Intel VTune
Amplifier XE finds bottlenecks, and Intel Inspector XE pinpoints memory
and threading errors before they happen. All this is of critical importance
when developing applications like HMMER for the latest generation

of multicore processors. O

Learn how Intel® Advisor XE can help improve
parallelization productivity.

BY RAVI VEMURI

What do space exploration, oil and natural gas exploration, Holly-
wood movies, and military operations have in common? Modeling,
simulation, exploration, storyboarding, and reconnaissance are
some of the phrases that come to mind. They are intended to
reduce the cost of wrong choices, failures, and missteps, and help
projects succeed and be more productive.

Software parallelization likewise can also benefit from parallelism
reconnaissance in which code is evaluated for suitability for
parallelization. Until now, there have been limited tools support to
do this. However, Intel® Advisor XE 2013 changes this and helps
the world of parallelization leapfrog forward. Intel® Advisor XE

is the newest component of the Intel® Parallel Studio XE suite

of products.

Software parallelization is potentially destabilizing to code, risky,
expensive, and complex. Current trial and error approaches are not
productive and there is considerable risk of dead ends. Embark-
ing on code parallelization based on measured data (for example,
otspots) is perhaps better, but is likewise mostly a hit or miss.

Intel® Advisor XE is built to help you find where to add

parallelism to your code, Use it to discover the parallel performance
(scalability) and code/data sharing issues (correctness) of
possible parallel code regions. It lets you model several different
regions within your program at once for parallel scalability and
correctness. The results help you make judicious choices about
which regions of code to not parallelize (to avoid dead ends), and
which regions of code to actually parallelize to reap the multicore
performance benefits.

Using this methodology helps you fix data sharing issues before
they happen. Even as you prepare the code for parallelization

by fixing the correctness issues, you can continue to use your
existing test framewaorks to validate your program—as it remains
functionally unchanged and correct.

Use of Intel® Advisor XE in your parallelization efforts is very
likely to reduce risk and increase the reward. Moreover, the to
empowers everyone in the software organization wit
to productively parallelize, instead of the cur
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Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
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