
by Walter Shands,
Software Development
Engineer

Using Intel® Software
Development Tools to
Analyze HMMER

This paper will highlight the features of Intel® Parallel Studio XE 2013 by using them to build
and analyze HMMER (http://hmmer.janelia.org/). HMMER is a set of applications, which includes

two, hmmsearch and hmmbuild, which are components of SPECint. We make use of event-
based sampling analysis in Intel® VTune™ Amplifier XE to find out which code paths, context

switches, or threading inactivity cause performance problems in hmmsearch. And, we’ll utilize
the code optimization features of the Intel® Composer XE compiler to improve the performance

of hmmsearch on Intel® Xeon® E5 processors. In addition, we will show you how to use
Intel® Inspector XE to locate memory and threading errors introduced into hmmsearch.

“To achieve more significant
performance gains, the
problem of serialization of
the application due to the
file read has to be solved.“

gcc -std=gnu99 -O3 -fomit-frame-pointer -ma-
lign-double -fstrict-aliasing –pthread –msse2

icc -O3 -ansi_alias -pthread

hmmsearch is used to search a protein sequence database
for homologs of protein sequences using profiles called hidden Markov
models. globins4.hmm contains the profiles and uniprot_trembl.fasta
 is a 10 GB sequence database.

hmmsearch is available in an MPI version, but we restricted our
experiments to the non-MPI flavor. We ran hmmsearch on a computer
with an 8-core Intel® Xeon® E5-2680 hyperthreaded processor at 2.7
GHz with 23.4 GB of memory. We ran the application using GCC and
the Intel® C compiler, in both cases using the settings provided by the
configure script. The initial GCC default switches were:

The application requires support for the SSE2 instruction set at a
minimum to support an algorithm optimized using intrinsics oriented
toward SSE2.

The default Intel® compiler flags were:

./hmmsearch globins4.hmm ../../
uniprot_trembl.fasta

A challenge in porting applications from one compiler to another
is making sure that there is support for the compiler options you use
to build your application. The Intel C compiler supports many of the
options that are valid on other compilers you may be using, such as
GCC. The compiler generates object files that are compatible with
GCC-generated object files, so you can compile part of your application
using the Intel compiler and the rest using GCC.

The -fomit-frame-pointer option is set when you specify
option -O1, -O2, or -O3 when using the Intel C compiler (so there is
no need to include it). The -malign-double option aligns double,
long- double, and long-long types for better performance for systems
based on IA-32 architecture and is available in the Intel C compiler.

We started the application with this command line:

The next step is to locate the hotspots in the application using Intel
VTune Amplifier XE. This profiler tool uses low overhead techniques
to quickly find multicore performance bottlenecks, without needing to
know the processor architecture or assembly code. Note that we do
not need to add code to the application to collect data.

To view source code lines of hmmsearch in VTune Amplifier XE, we
need to include symbols in the release build—so we add the –g flag.
We added the –fno-inline-functions flag as well; this allows
us to see all of the code in question in the VTune Amplifier XE
source view.

The VTune Analyzer XE hotspots analysis shows where most of the
CPU activity is occurring in the application and the amount of CPU
activity on the threads over time. (Figure 1)

The VTune Amplifier XE hotspots view tells us that the function
consuming the most CPU time is p7_MSVFilter, and double-clicking on
the function name displays the SSE intrinsics calls used in optimizing
the performance of the function. The assembly view shows us that the
Intel compiler utilized vector instructions, but is not taking advantage
of the 256-bit registers or AVX instructions on the Intel Xeon processor.
(Figure 2)

It’s possible that we could compile the original C code for p7_
MSVFilter with the Intel compiler and help the compiler vectorize the
function for the instruction set available on the target machine, so
that the function is not limited to using 128 bit registers.

The thread timeline view shows that there is not much CPU time
used in the worker threads, but a large amount is used in one thread.
This turns out to be the thread that is reading the sequence
database file. (Figure 3)

2

Figure 1

Figure 2

Figure 3

3

Figure 4

Figure 5

The application creates a number of threads equal to the number of HW threads on the
machine plus one, which in the case of a hyperthreaded machine is equal to the number of
hyperthreads plus one. In this case, there are 17 threads running. If we use the hmmsearch
–cpu 4 flag to limit the threads to five threads, VTune Amplifier XE shows that the application
scales well—unlike the situation with 17 threads. (Figure 4)

Evidence of this is the 67.418-second runtime with 17 threads, which is worse than the
62.561-second runtime with four threads.

We can see that the top thread is the one reading the data file by filtering the results
by thread in the five-thread hotspot display. (Figure 5)

4

Figure 6

Figure 7

Figure 8

Figure 9

If we use the VTune Amplifier XE Locks
and Waits feature on the run with 17 threads
it shows us a large number of transitions,
indicated by yellow lines from the thread
reading the sequence database file to
worker threads. (Figure 6)

hmmsearch uses a producer consumer
model. This is where a producer thread (labeled
Thread (0xa0) in the graphic) puts data to be
processed on a queue that worker threads
(labeled pipline_thread in the graphic) remove
when the producer thread signals them with
a broadcast message, resulting in a thread
transition from the producer thread to the
worker thread.

By zooming in, we can see that the amount
of thread running time (dark green) is less
than thread waiting time (light green),
indicating lost time to do productive work.
(Figure 7)

Compare this with a zoom-in on the
thread view for hmmsearch using only four
threads. Note that thread transitions from
the thread reading the data file, the top
thread, typically result in productive work
to the worker thread. (Figure 8)

However, when using 17 threads in
hmmsearch, many thread transitions do not
result in work being done. (Figure 9)

Zooming in even closer on the 17 thread
case, we can see these thread transitions are
the result of a pthread_cond_broadcast call
that tells the worker threads that a block of
data is ready on the work queue to be
processed. Only one thread at time can grab
the block of data—so the
other threads must wait again. (Figure 10)

When only five threads are used, only
about two threads are waiting to get a block
of data to process, and only one thread
goes unsatisfied. (Figure 11)

All of this indicates that with more than
four threads, the hmmsearch pipeline threads
become starved for data. In other words, the
thread reading the data file cannot provide data
fast enough to keep up with computation in
the worker threads.

From our analysis using VTune Amplifier
XE, we know that the most time-consuming
code is the MSV algorithm, which has
been optimized with SSE intrinisics in p7_
MSVFilter in the file msvfilter.c. The
intrinsic-optimized code also contains some
optimizations over and above vectorization,
so it will be faster.

5

Figure 10

To see if the Intel compiler can effectively vectorize the nonintrinsic
optimized code, we compiled the application to use the unoptimized C
code in the function p7_GMSV in the file generic_msv.c. VTune Amplifier
XE again shows that the MSV algorithm is the hotspot. (Figure 12)

 VTune Amplifier XE also shows that the most time-consuming
part of the MSV algorithm is a single loop that is not taking advantage
of AVX instructions or YMM registers on the Intel Xeon processor.
(Figure 13)

The runtime of hmmsearch using this code is about four minutes
and 30 seconds.

CPU time: 4137.39u 5.02s
01:09:02.41 Elapsed: 00:04:30.08

 If we use the –opt-report flag for the Intel compiler, it will tell us
what inlining, loop, memory, vectorization, and parallelization
optimizations have been done for each function. For the p7GMSV
function, it tells us the loop was not vectorized.

By restructuring the code, we can enable the compiler to vectorize
the loop and generate code that takes advantage of Intel Xeon
architecture. The optimization report from the compiler indicates that
the two loops resulting from the restructuring were vectorized:

In addition, the VTune Amplifier XE assembly view shows that AVX
instructions are being used along with the larger YMM registers.
(Figure 14)

The resulting runtime of the application is close to half of the
original runtime.

generic_msv.c(88:7-88:7):VEC:p7_
GMSV: LOOP WAS VECTORIZED

generic_msv.c(108:7-108:7):VEC:p7_
GMSV: LOOP WAS VECTORIZED

CPU time: 2207.74u 4.96s
00:36:52.69 Elapsed: 00:02:28.16

We can use Intel Inspector XE to check hmmsearch for threading and
memory errors. It gives detailed insight into application memory
and threading behavior to improve application reliability, and its
powerful thread checker and debugger make it easier to find latent
errors on the executed code path. Intel Inspector XE also finds
intermittent and nondeterministic errors, even if the error-causing
timing scenario does not happen.

generic_msv.c(80:7-80:7):VEC:p7_GMSV: loop
was not vectorized: existence of vector
dependence

6

Figure 11

Figure 12

Figure 13

“The Intel® C compiler
and libraries create
faster code, Intel®
VTune™ Amplifier XE
finds bottlenecks,
and Intel® Inspector XE
pinpoints memory
and threading errors
before they happen.
All this is of critical
importance when
developing applications
like HMMER.“

7

Figure 14

Figure 15

Figure 16

Intel Inspector XE finds memory leaks,
corruption, and inconsistent memory API
usage, as well as data races, deadlocks, and
memory accesses between threads.

As with Intel VTune Amplifier XE, we don’t
need to create a special build or add code to
the application to collect data.

Because there is significant overhead in
detecting memory and threading bugs, we
launch hmmsearch using a smaller sequence
database file, as well as an application
option that reduces the number of threads.

When we run Intel Inspector XE in the
Detect Memory Problems mode, a few
uninitialized memory accesses are exposed.
(Figure 15)

 Right-clicking on a line in the Detect
Memory Problems pane brings up a
description of an uninitialized memory
access problem: (Figure 16)

 Intel Inspector XE running in Locate
Deadlocks and Data Races mode did not
detect any issues. (Figure 17)

 In order to increase application
performance, we can take advantage of
Intel® Cilk™ Plus in the Intel compiler. Cilk Plus
is an extension to C and C++ that offers a
quick, easy, and reliable way to improve
the performance of programs on multicore
processors. It is an open standard and will
soon be available in GCC 4.7. Cilk Plus, included
in the Intel® C/C++ compiler, allows you to
improve performance by adding parallelism to
new or existing C or C++ programs using only
three keywords: cilk_for, cilk_
spawn, and cilk_sync.

8

Figure 17

Figure 18

Figure 19

We use Cilk Plus to replace the code
that manages threads, mutexes, condition
variables, and the work queue with the added
benefit of better scheduling. However, we
must still synchronize threads on the data
file read, which results in serializing a portion
of the application.

In the Intel VTune Amplifier XE Hotspots
graphic of an hmmsearch run, you can see
that because of the synchronization resulting
from mutexes around the code reading the
sequence database file, the CPUs are not
fully utilized. But the Cilk Plus implementation
has a shorter runtime at 58.272 seconds
compared to the original runtime of 67.418
seconds. (Figure 18)

If we run a VTune Amplifier XE locks and
waits analysis we can see that there are still
many thread transitions. (Figure 19)

If we zoom into the thread pane in the locks
and waits analysis, we see that the thread
transitions are between worker threads, and
that they involve the mutex that protects the
file read, which is now carried out by each
worker thread. (Figure 20)

9

Figure 20

Figure 21

One of the other powerful features of Cilk
Plus is the C/C++ language extension for
array notations. This Intel-specific language
extension provides data parallel array nota-
tions, which enable compiler parallelization and
vectorization with less reliance on alias and
dependence analysis.

To achieve more significant performance
gains, the problem of serialization of the
application due to the file read has to be
solved. Reading the data into memory prior
to computation is not realistic when using
the uniprot_trembl.fasta data file, because
we would exceed memory capacity on our
machine, although if enough memory was
available it would speed up subsequent
computations using the same data.

Further performance gains can be achieved
by taking advantage of Intel compiler
options. Since the Intel compiler default
instruction set is SSE2 and the target

machine is Intel Xeon, it would be a good idea
to take advantage of AVX instructions and
larger register size by using the –xhost
switch that will generate an instruction set
up to the highest level supported on the
compilation host.

Another important compiler option is –
ipo, which enables interprocedural optimi-
zation between files. This is also called multi-
file interprocedural optimization (multifile
IPO) or whole program optimization (WPO).
When you specify this option, the compiler
performs inline function expansion for calls to
functions defined in separate files.

For help on finding out what to do to help
the Intel compiler vectorize or parallelize
loops we can use the –guide flag, which
provides a report without producing objects
or executables. The guided auto-parallelization
feature of the Intel compiler is a tool that
offers selective advice, resulting in better

esl_vectorops.c(161):
remark #30536: (LOOP) Add
-fargument-noalias option
for better type-based
disambiguation analysis by
the compiler, if appropriate
(the option will apply for
the entire compilation).
This will improve
optimizations such as
vectorization for the loop
at line 161.

performance of serially coded applications.
The advice typically falls under three broad
categories: source code modification, use of
pragmas, and addition of compiler options.

Here is one of the suggestions after using
the option in hmmsearch:

10

What do space exploration, oil and natural gas exploration, Holly-
wood movies, and military operations have in common? Modeling,
simulation, exploration, storyboarding, and reconnaissance are
some of the phrases that come to mind. They are intended to
reduce the cost of wrong choices, failures, and missteps, and help
projects succeed and be more productive.

Software parallelization likewise can also benefit from parallelism
reconnaissance in which code is evaluated for suitability for
parallelization. Until now, there have been limited tools support to
do this. However, Intel® Advisor XE 2013 changes this and helps
the world of parallelization leapfrog forward. Intel® Advisor XE
is the newest component of the Intel® Parallel Studio XE suite
of products.

Software parallelization is potentially destabilizing to code, risky,
expensive, and complex. Current trial and error approaches are not
productive and there is considerable risk of dead ends. Embark-
ing on code parallelization based on measured data (for example,
hotspots) is perhaps better, but is likewise mostly a hit or miss.
Code may or may not scale well. Stability issues due to incorrect
parallelization also may lurk and surface long after the code is
productized, and become costly to fix.

Learn how Intel® Advisor XE can help improve
parallelization productivity.
BY RAVI VEMURI

msvfilter.c(106): remark #30525: (PAR)
Insert a “#pragma loop count min(1024)”
statement right before the loop at line
106 to parallelize the loop. [VERIFY]
Make sure that the loop has a minimum
of 1024 iterations.

Adding the –parallel switch allows the Intel compiler to
detect simply structured loops that may be executed in parallel, and
automatically generates multithreaded code for them. If you use
guided auto-parallelization options along with –parallel, the
compiler may suggest advice on further parallelizing opportunities in
your application:

Intel® Advisor XE is built to help you find where to add
parallelism to your code. Use it to discover the parallel performance
(scalability) and code/data sharing issues (correctness) of
possible parallel code regions. It lets you model several different
regions within your program at once for parallel scalability and
correctness. The results help you make judicious choices about
which regions of code to not parallelize (to avoid dead ends), and
which regions of code to actually parallelize to reap the multicore
performance benefits.

Using this methodology helps you fix data sharing issues before
they happen. Even as you prepare the code for parallelization
by fixing the correctness issues, you can continue to use your
existing test frameworks to validate your program—as it remains
functionally unchanged and correct.

Use of Intel® Advisor XE in your parallelization efforts is very
likely to reduce risk and increase the reward. Moreover, the tool
empowers everyone in the software organization with the skill
to productively parallelize, instead of the current situation where
just the architects and senior engineers have this capability.

You can see how exciting the potential is for your applications.
Please explore the product in greater detail at the Intel® Advisor
XE product page, and let us know what you think. o

We can also use the VTune Amplifier XE hardware event counter
collection to get insight into bottlenecks in application code affecting
performance. VTune Amplifier XE highlights collected data indicative
of performance problems that should be investigated. Here is one
example of an hmmsearch run. (Figure 21)

Conclusion
Intel® Software Development Tools help you boost application
performance and increase the code quality, security, and reliability
needed by high performance computing and enterprise applications.
The Intel C compiler and libraries create faster code, Intel VTune
Amplifier XE finds bottlenecks, and Intel Inspector XE pinpoints memory
and threading errors before they happen. All this is of critical importance
when developing applications like HMMER for the latest generation
of multicore processors. o

11

http://software.intel.com/en-us/blogs/author/ravi/
http://software.intel.com/en-us/intel-advisor-xe
http://software.intel.com/en-us/intel-advisor-xe

12

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets
and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization
on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are
intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are
reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more
information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

 © 2012, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Core, Cilk, VTune, and Xeon are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

